For $\alpha>0$, evaluate $\int^{+\infty}_0xe^{-x}\cos x\cos(x^2/\alpha)\,dx$

complex-analysisfourier analysisfourier transformimproper-integralsintegration

For $\alpha>0$, prove\begin{align}\displaystyle\int_0^{\infty}xe^{-x}\cos(x)\cos\left(\dfrac{x^2}{\alpha}\right){\rm d}x=\dfrac{\alpha\sqrt{2\pi\alpha}}{8}e^{-\alpha/2} \end{align}

My attempt: Let $$I(b)=\displaystyle\int_0^{\infty}e^{-x}\sin(bx)\cos\left(\dfrac{x^2}{\alpha}\right){\rm d}x$$
Hence$$I'(1)=\displaystyle\int_0^{\infty}xe^{-x}\cos(x)\cos\left(\dfrac{x^2}{\alpha}\right){\rm d}x $$
But \begin{align}I(b) & =\displaystyle\int_0^{\infty}e^{-x}\sin(bx)\cos\left(\dfrac{x^2}{\alpha}\right){\rm d}x\\&=\dfrac{1}{2}\displaystyle\int_0^{\infty}e^{-x}\left(\sin(bx-x^2/\alpha)+\sin(bx+x^2\alpha)\right){\rm d}x\\&=I_1+I_2\end{align}
But I have difficulty using contour integral to calculate $I_1$ or $I_2$ .

how to solve it using contour inregral?
Is there a more efficient method to solve this problem? I have a thought that Fourier Transform is a possible method.

Best Answer

I will write

$$ J_{\pm} = \int_{0}^{\infty} xe^{-x}\cos\left(x\pm\frac{x^2}{\alpha}\right)\,\mathrm{d}x $$

so that your integral takes the form $\frac{1}{2}(J_{+} + J_{-})$. Then

\begin{align*} J_{\pm} &= \operatorname{Re}\left[ \int_{0}^{\infty} x\exp\left( -x + ix \pm \frac{ix^2}{\alpha}\right) \,\mathrm{d}x. \right] \end{align*}

Now write $\mathbb{H}_{\text{right}} = \{ z \in \mathbb{C} : \operatorname{Re}(z) > 0 \}$. Then for each $a \in \mathbb{H}_{\text{right}}$, the map $z \mapsto \int_{0}^{\infty} x e^{-ax-zx^2} \, \mathrm{d}x$ is analytic on $\mathbb{H}_{\text{right}}$ and continuous on $\overline{\mathbb{H}_{\text{right}}}$. Moreover, if $a, z \in (0, \infty)$, then with $b = a^2/4z$,

\begin{align*} \int_{0}^{\infty} x e^{-ax-zx^2} \, \mathrm{d}x &= \int_{0}^{\infty} x \exp\bigg( -b \left(\frac{2z x}{a}+1\right)^2 + b \bigg) \, \mathrm{d}x \\ &= \frac{be^{b}}{z} \int_{1}^{\infty} (u-1) e^{-bu^2} \, \mathrm{d}u \\ &= \frac{be^{b}}{z} \left( \int_{1}^{\infty} u e^{-bu^2} \, \mathrm{d}u - \int_{0}^{\infty} e^{-bu^2} \, \mathrm{d}u + \int_{0}^{1} e^{-bu^2} \, \mathrm{d}u \right) \\ &= \frac{1}{2z} - \frac{\sqrt{\pi} a e^{b}}{4z^{3/2}} + \frac{be^{b}}{z} \int_{0}^{1} e^{-bu^2} \, \mathrm{d}u. \end{align*}

Then by the principle of analytic continuation, this holds for all $a \in \mathbb{H}_{\text{right}}$ and $z \in \overline{\mathbb{H}_{\text{right}}}$. Then plugging $a = 1-i$ and $z = z_{\pm} = \pm i/\alpha$, we get $b = b_{\pm} = \mp \alpha /2 \in \mathbb{R}$.

\begin{align*} J_{\pm} &= \operatorname{Re}\bigg[ \frac{1}{2z} - \frac{\sqrt{\pi} a e^{b}}{4z^{3/2}} + \frac{be^{b}}{z} \int_{0}^{1} e^{-bu^2} \, \mathrm{d}u \bigg] \\ &= -\frac{\sqrt{\pi} \, e^{b}}{4} \operatorname{Re}\bigg[ \frac{a}{z^{3/2}} \bigg], \end{align*}

By noting that $a_{+}/z_{+}^{3/2} = -\sqrt{2}\,\alpha^{3/2}$ and $a_{-}/z_{-}^{3/2} = i\sqrt{2}\,\alpha^{3/2}$, we get

$$ J_{+} = \frac{\sqrt{2\pi}}{4} \alpha^{3/2} e^{-\alpha/2}, \qquad J_{-} = 0. $$

This complete the proof.

Related Question