Trigonometry – Find Values of x Satisfying sin(x) + sin(2x) + … + sin(nx) ? ?3/2 for All n

inequalitysequences-and-seriestrigonometry

If the exhaustive set of $x\in(0,2\pi)$ for which $\forall n$ the inequality $$\sin x+\sin2x+\sin3x+\cdots+\sin nx\le\frac{\sqrt3}{2}$$ is valid is $l_1\le x\le l_2$, find $l_1$ and $l_2$.

Let $\displaystyle\sum_{i=1}^n \sin(ix)$=$S$ then I have managed to show that $$S=\frac{\sin\left(\frac{nx+x}{2}\right)\cdot\sin\left(\frac{nx}{2}\right)}{\sin\left(\frac{x}{2}\right)}$$

I do not know what to do next. How can I handle the case for all $n?$

Any help is greatly appreciated.

Best Answer

Put $y=\frac x2$. Then $y\in (0,\pi)$, so $\sin y>0$ and $\cos\frac y2>0$. For each $n$ we have
$$S=\frac{\sin (n+1)y\cdot\sin ny}{\sin y}=\frac{\cos y -\cos(2n+1)y}{2\sin y}\le \frac{\sqrt{3}}{2},$$ that is $$\cos y -\cos(2n+1)y\le \sqrt{3}\sin y,$$ $$\frac12 \cos y-\frac{\sqrt{3}}2\sin y\le\frac 12\cos(2n+1)y,$$ $$\cos\left(y+\frac{\pi}3\right)\le\frac 12\cos(2n+1)y$$ The latter inequality holds for each natural $n$ provided $$\cos\left(y+\frac{\pi}3\right)\le-\frac 12=-\cos\frac{\pi}3,$$ $$\cos\left(y+\frac{\pi}3\right)+\cos\frac{\pi}3\le 0,$$ $$\cos\left(\frac y2+\frac{\pi}3\right)\cos\frac{y}2\le 0,$$ that is when $$\frac y2+\frac{\pi}3\ge \frac{\pi}{2},$$ $$y\ge \frac{\pi}3.$$

The remaining case $y<\frac \pi{3}$ was already considered in D S's answer.