Finding the value of $\displaystyle\int_{x_1+x_2}^{3x_2-x_1}\big\{\frac x4\big\}\left(1+\left[\tan\left(\frac{\{x\}}{1+\{x\}}\right)\right]\right)dx$

calculusdefinite integralsfunctionsintegration

If $x_1$ and $x_2$ ($x_1\lt x_2$) are two values of $x$ satisfying the equation $\left|2\left(x^2+\frac1{x^2}\right)+|1-x^2|\right|=4\left(\frac32-2^{x^2-3}-\frac1{2^{x^2+1}}\right)$ then find the value of $\displaystyle\int_{x_1+x_2}^{3x_2-x_1}\big\{\frac x4\big\}\left(1+\left[\tan\left(\frac{\{x\}}{1+\{x\}}\right)\right]\right)dx$ (where $\{*\}$ and $[*]$ denotes fractional part function & greatest integer function respectively.)

RHS of the given equation can be written as $6-2^{x^2-1}-\frac1{2^{x^2-1}}=6-(y+\frac1y),$ where $y=2^{x^2-1}$

Since $y\gt0\implies y+\frac1y\ge2\implies RHS\ge4$

LHS$=\left|2\left(x-\frac1x\right)^2+4+|1-x^2|\right|\ge4\implies 2\left(x-\frac1x\right)^2+4+|1-x^2|\ge4$ (taking only one case as of now)

Thus, $2\left(x-\frac1x\right)^2+|1-x^2|\ge0$, which is true always. Does the question imply there are only two values of $x$ satisfying the given equation?

In any case, how to proceed next?

Best Answer

  • By substitution, roots are $\pm 1$. So $x_2=1, x_1=-1$.
  • Integral is $$\int_0^4 \big\{\frac x4\big\}\left(1+\left[\tan\left(\frac{\{x\}}{1+\{x\}}\right)\right]\right)dx$$
  • Argument of $\tan$ is less than $\pi/4$. So greatest integer function returns zero.

Hint : Solve the inequality $$\frac{y}{1+y} \ge \frac{\pi}{4}$$

and check range of $y$.

  • In $(0,4)$, $x/4 \in (0,1)$ so $$\big\{\frac x4\big\} = \frac{x}{4}$$

Putting together, the intimidating integral reduces to $$\int_0^4 \frac{x}{4} \, dx$$

Related Question