Finding the sum of $\sum^\infty_{k=1}{\frac{1}{k(k+2)}}$ with partial fraction decomposition

calculusharmonic-numbersintegrationsequences-and-series

In the problem below, I got the partial fraction decomposition but don't know how to get the answer:

$$\sum^\infty_{k=1}{\frac{1}{k(k+2)}}$$

I found the answer, using an online calculator, to be $\frac{3}{4}$.

When I did the partial fraction decomposition I got:

$$\sum^\infty_{k=1}\frac{1}{2k}-\frac{1}{2(k+2)}$$

Then I got the sum of

$$\left(\frac{1}{2}\right)+\dotsi-\frac{1}{2(n+2)}$$

Why does this equal $\frac{3}{4}$ and not $\frac{1}{2}$?

Best Answer

For $n \geq 3,$ the partial sums $$\begin{align*}\sum_{k=1}^n \left(\frac{1}{2k} - \frac{1}{2(k+2)}\right) &= \sum_{k=1}^n \frac{1}{2k} - \sum_{k=1}^n \frac{1}{2(k+2)} \\ &= \sum_{k=1}^n \frac{1}{2k} - \sum_{k=3}^{n+2} \frac{1}{2k} \\ &= \left(\frac{1}{2(1)} + \frac{1}{2(2)} + \sum_{k=3}^n \frac{1}{2k}\right) - \left(\sum_{k=3}^n \frac{1}{2k} + \frac{1}{2(n+1)} + \frac{1}{2(n+2)}\right) \\ &= \frac{1}{2(1)} + \frac{1}{2(2)} - \frac{1}{2(n+1)} - \frac{1}{2(n+2)} \\ &= \frac{3}{4} - \frac{1}{2(n+1)} - \frac{1}{2(n+2)}\end{align*}$$ have limit $\frac{3}{4}.$

Related Question