Finding the Standard Matrix of a Unique Linear Transformation

linear-transformationsmatricesvector-spaces

Given a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ such that
$$T \left( \begin{bmatrix} 0\\-3\\-2 \end{bmatrix} \right) = \begin{bmatrix} 1\\2\\4\\-1 \end{bmatrix}, \space T \left( \begin{bmatrix} 1\\-4\\-2 \end{bmatrix} \right) = \begin{bmatrix} -1\\-2\\1\\2 \end{bmatrix}, \space T \left( \begin{bmatrix} -3\\4\\1 \end{bmatrix} \right) = \begin{bmatrix} 2\\1\\2\\2 \end{bmatrix}$$
Find the standard matrix $[T].$

My first step was to find the following:
$$T(e_{1})= \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \space T(e_{2}) = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \space T(e_{3}) = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

However, looking at the 3×1 matrices given by the question, there is no operations that could give the identity vectors above. Thus, there must be an alternative way in finding the standard matrix that I forgot about. Any help would be appreciated!

Best Answer

It is not true that $T(e_i)$ is a vector in $\mathbb{R}^3$. Since the codomain of $T$ is $\mathbb{R}^4$, it should be a vector in $\mathbb{R}^4$.

For convenience, let $u_1=[0,-3,-2]^T$, $u_2=[1,-4,-2]^T$, and $u_3=[-3,4,1]^T$. For example, to determine $T(e_1)$, we first want to determine the linear combination of $e_1$ as $u_1,u_2,u_3$, i.e., solve the linear system $$ c_1\cdot\begin{bmatrix} 0 \\ -3 \\ -2 \end{bmatrix}+c_2\cdot\begin{bmatrix} 1 \\ -3 \\ -2 \end{bmatrix}+c_3\cdot\begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}. $$ After you find $c_1,c_2,c_3$, you can write $$T(e_1)=T(c_1u_1+c_2u_2+c_3u_3)=c_1T(u_1)+c_2T(u_2)+c_3T(u_3)=\cdots$$ Apply similar arguments on $e_2$ and $e_3$. Then the standard matrix $[T]$ (I assume it is the matrix representation of $T$ w.r.t. standard basis on both sides.) should be $$[T]=\begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix}.$$ Nevertheless, do not forget to check $u_1$, $u_2$, and $u_3$ are linearly independent first, or they do not constitute a basis for $\mathbb{R}^3$.


Of course there are some more convenient formulas, but I believe we should start with elementary approaches first.