Finding the set corresponding to the pre-image (inverse image) $f^{-1}\left(\left[0, 1/2\right]\right)$, given by $f(x) = \sin(x).$

algebra-precalculusfunctions

I am not quite sure about how to find the pre-image of the function $f(x) = \sin(x)$, for $x \in \mathbb{R}.$

The question is:

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sin(x)$. Describe the set: $$f^{-1}\left(\left[0, \frac{1}{2}\right]\right).$$

This is what I did:

For $x \in [0,2\pi]$, $\sin(x) =0$ when $x=0,\,\pi$ and $\sin(x)=1/2$ when $x=\pi/6,\,5\pi/6$.

So $$f^{-1}\left(\left[0, \frac{1}{2}\right]\right)=\left[0, \frac{\pi}{6}\right] \cup \left[\frac{5\pi}{6}, \pi \right].$$

Similarly for $x \in [-2\pi,0)$, $\sin(x) = 0$ when $x=-\pi,\,-2\pi$ and $\sin(x) = 1/2$ when $x=-7\pi/6,\,-11\pi/6.$

So $$f^{-1}\left(\left[0, \frac{1}{2}\right]\right)=\left[-\frac{7\pi}{6}, -\pi\right] \cup \left[-2\pi,-\frac{11\pi}{6} \right].$$

Then for $x \in [-2\pi, 2\pi],$
$$f^{-1}\left(\left[0, \frac{1}{2}\right]\right) = \left[-\frac{7\pi}{6}, -\pi\right] \cup \left[-2\pi,-\frac{11\pi}{6} \right]\cup \left[0, \frac{\pi}{6}\right] \cup \left[\frac{5\pi}{6}, \pi \right].$$

I know that $\sin(x)$ is $2\pi$-periodic, but I don't know how to write the final set, after finding all of the intervals.

Best Answer

From the fact that the pre-image in $[0,2\pi]$ is $[0,\pi/6]\cup[5\pi/6,\pi]$ and the periodicity you can 'simply' write $$f^{-1}\left(\left[0,\frac12\right]\right)=\bigcup_{k\in\Bbb Z}\left(\left[2k\pi,2k\pi+\frac\pi6\right]\cup\left[2k\pi+\frac{5\pi}6,2k\pi+\pi\right]\right),$$ that is, add $k$ times the period $2\pi$ to each end of each interval, and take the union for $k\in\Bbb Z$.

There are more compact, but also more 'cryptic' writings.

Related Question