Finding the roots of a polynomial to get expression for real part of a unit root of the heptadecagon

abstract-algebrapolynomialsroots

I got this polynomial
$$
f(x)=x^8+x^7-7x^6-6x^5+15x^4+10x^3-10x^2-4x+1
$$

by calculating
$$
z^{17}=1
$$

and then $x=z+\overline{z}=2\operatorname{Re}z$. Now one root of $f$ is therefore of course
$$
2\cos\left(\frac{2\pi}{17}\right).
$$

My question is:

Can someone go on from here with the polynomial $f$ and derive the expression
$$
\small{2\cos \frac{2\pi}{17} = \frac{1}{8} \left( -1 + \sqrt{17} + \sqrt{ 2 \left(17 – \sqrt{17} \right)}
+ 2 \sqrt{ 17 + 3 \sqrt{17} – \sqrt{2 \left(17- \sqrt{17} \right)} – 2 \sqrt{2 \left(17+ \sqrt{17} \right)} } \right)}
$$

that Gauss got while proving that the heptadecagon is constructible?

Note: I know the way he did it by using the primitive root $3$ mod $17$, a generator of $\mathbb{Z}_{17}^*$, but I wanted to get to the solution using $f$.


Update:

In a similar Stack Exchange question I found that
$$
g(t)=t^4 + t^3 – 6t^2 – t + 1
$$

is related to $f$.

Is there a substitution to get
$$
g(\text{substitution})=f(x)
$$

Best Answer

There are several ways to do it. One straightforward way is to factor the octic into two quartics over a square root extension, then use the quartic formula. Quartics have a cubic resolvent, but since the $17$th root of unity is construcible, then we know this cubic will also factor over a square root.


I. Factoring the octic

Given,

$$x^8+x^7-7x^6-6x^5+15x^4+10x^3-10x^2-4x+1= 0$$

Factor this into two quartics over $\sqrt{17}$ choosing,

$$x^4 + \frac{1 - \sqrt{17}}2x^3 - \frac{3 + \sqrt{17}}2x^2 + (2 + \sqrt{17})x - 1 = 0$$

such that $x = 2\cos \left(\frac{2\pi}{17} \right)$. Depress the quartic with the transformation,

$$x = y+\frac{-1 + \sqrt{17}}8$$

to get,

$$y^4 + \frac{-51 - 5\sqrt{17}}{16}y^2 + \frac{17 + 7\sqrt{17}}{16}y + \frac{221 + 43 \sqrt{17}}{512} = 0$$


II. Depressed quartic

Given,

$$y^4+py^2+qy+r = 0$$

then its cubic resolvent is simply,

$$ u^3 + 2p u^2 + (p^2 - 4r)u - q^2 =0$$

With any non-zero root $u$, then the depressed quartic's formula for the four roots are,

$$y_k = \frac12\left(\sqrt{u}\pm\sqrt{-(2p+u)-\frac{2q}{\sqrt{u}}}\right)$$

for $\pm\sqrt{u}$ and you are done.


III. Cubic resolvent

Given $(p,q,r)$ we find the resolvent as,

$$u^3 + \frac{-51 - 5 \sqrt{17}}8u^2 + \frac{323 + 53 \sqrt{17}}{32}u - \left(\frac{17 + 7\sqrt{17}}{16}\right)^2 = 0$$

this has the root,

$$u = \frac{17-\sqrt{17}}{8}$$

Using the formula and reversing the transformation, we find,

$$x = \frac{-1+\sqrt{17}}8+\frac12\sqrt{u}+\frac12\sqrt{\sqrt{17}+2u-\sqrt{\frac{17}{u}}-\sqrt{u}}$$

After some minor algebraic manipulation, we end up with the original form,

$$\small{x_1 = 2\cos \left(\frac{2\pi}{17} \right) = \frac{1}{8} \left( -1 + \sqrt{17} + \sqrt{ 2 \left(17 - \sqrt{17} \right)} + 2 \sqrt{ 17 + 3 \sqrt{17} - \sqrt{2 \left(17- \sqrt{17} \right)} - 2 \sqrt{2 \left(17+ \sqrt{17} \right)} } \right)}$$


IV. Conjugate

Using one of its conjugates,

$$\small{x_2 = 2\cos \left(\frac{8\pi}{17} \right) = \frac{1}{8} \left( -1 + \sqrt{17} + \sqrt{ 2 \left(17 - \sqrt{17} \right)} \color{red}{-} 2 \sqrt{ 17 + 3 \sqrt{17} - \sqrt{2 \left(17- \sqrt{17} \right)} - 2 \sqrt{2 \left(17+ \sqrt{17} \right)} } \right)}$$

then,

$$t=x_1+x_2 = 2\cos \left(\frac{2\pi}{17} \right)+2\cos \left(\frac{8\pi}{17} \right) = \frac{1}{4} \left( -1 + \sqrt{17} + \sqrt{ 2 \left(17 - \sqrt{17} \right)}\right)$$

a root of,

$$t^4 + t^3 - 6t^2 - t + 1 = 0$$

which was the second question of the OP.

Related Question