Finding the PDF of the difference of two i.i.d exponential random variables.

convolutiondefinite integralsintegrationprobabilityprobability distributions

I have two random variables $X_1$ and $X_2$ where:

$$f_{X_1}(x) = f_{X_2}(x) = \begin{cases} e^{-\frac x2}, \quad \text{if} \; 0 \leq x \leq \mathrm{ln}\: 4\\ 0, \quad \quad \text{otherwise} \end{cases}$$

and a third random variable $Y = X_1 – X_2$. Now I understand that the sum of two independent random variables can found using a convolution so it makes sense that the difference can also be found using a convolution but how?

My PDF looks like this:

pdf

and I know that graphically the convolution for $X_1 +X_2$ looks like this:

  1. First integral from $0$ to the point where red is still inside blue (in this case $t$)

conv1

  1. Then integral from $t-\mathrm{ln}\:4$ to $\mathrm{ln}\:4$

conv2

So how does this change once we take the difference and not the sum? Essentially, if flipping and shifting is the convolution sum then what it different when there is a difference that needs to be calculated?

Edit: Based on the answer by perepelart I solved the convolution sum as follows:

to find $Y$ we can start the convolution as follows:

Step 1:
First, we flip $f_Z$ and slide it to the point that it starts entering $f_X$. Before this point $f_Y$ is zero.

convolute1

Here-forth the convolution integral for $-\mathrm{ln}\: 4 \leq t<0$ becomes:

\begin{align*}
f_X \ast f_Z &= \int_{-\infty}^{\infty} f_X(x) f_Z(t-x) dx\\
& = \int_{0}^{t+\mathrm{ln}\: 4} f_X(x) f_Z(t-x) dx\\
& = \int_{0}^{t+\mathrm{ln}\: 4} e^{-\frac x2} e^{-\frac{(t-x)}{2}} dx\\
& = (t+\mathrm{ln}\: 4)e^{-\frac t2} \qquad \text{for} \: -\mathrm{ln}\: 4 \leq t<0
\end{align*}

Step 2:
In this step the sliding PDF $f_Z$ has began exiting the PDF $f_X$ which looks like this:

convolute2

which will give us the values for $f_Y$ for $0\leq t\leq\mathrm{ln}\: 4$.

Here-forth the convolution integral for $0<t<\mathrm{ln}\: 4$ becomes:

\begin{align*}
f_X \ast f_Z &= \int_{-\infty}^{\infty} f_X(x) f_Z(t-x) dx\\
& = \int_{t}^{\mathrm{ln}\: 4} f_X(x) f_Z(t-x) dx\\
& = \int_{t}^{\mathrm{ln}\: 4} e^{-\frac x2} e^{-\frac{(t-x)}{2}} dx\\
& = -(t-\mathrm{ln}\: 4)e^{-\frac t2} \qquad \text{for} \; 0 \leq t \leq\mathrm{ln}\: 4
\end{align*}

Hence, the PDF of $Y$ is:

$$f_Y(y)= \begin{cases}
(y+\mathrm{ln}\: 4)e^{-\frac y2}, \qquad \text{for} \; -\mathrm{ln}\: 4 \leq y<0,\\
-(y-\mathrm{ln}\: 4)e^{-\frac y2}, \quad \; \text{for} \; 0 \leq y \leq \mathrm{ln}\: 4,\\
0 \qquad \qquad \qquad\qquad \text{otherwise}.
\end{cases}$$

The plot of $f_Y(y)$ looks as follows:

Y

Although $f_Y$ is always non-negative it integrates to $2$, hence, it is an invalid PDF.

Best Answer

If we know the distribution of the $X_2$, we can find the distribution of the $-X_2.$ I tried to do it as straightforward as possible.

As $F_\xi(y)$ I denote the CDF of the random variable $\xi$.

$$F_{-X_2}(y)=\mathbb{P}(-X_2\leq y)=\mathbb{P}(X_2 \geq -y)=1-\mathbb{P}(X_2\le -y)=\\=1-F_{X_2}(-y).$$ Now, to find the density of $-X_2$, you can just differentiate $F_{-X_2}(y)$ : $$f_{-X_2}(y)=\frac{d}{dy}\left(F_{-X_2}(y)\right)=\frac{d}{dy}(1-F_{X_2}(-y))=\\=f_{X_2}(-y)=\mathbf{1}_{\{-\ln4\leq y\leq 0\}}e^{\frac{y}{2}}$$

By $\mathbf{1}_{A}(y)$ where $A$ is an event I denote indicator function. It equals $1$ whenever $y \in A$ and equals zero otherwise. It's just an elegant way to define a piecewise function.

Without indicator you can write it as follows :

$$f_{-X_2}(y)=\mathbf{1}_{\{-\ln4\leq y\leq 0\}}(y) \cdot e^{\frac{y}{2}} = \begin{cases}e^{\frac{y}{2}}, -\ln4\leq y\leq 0 \\ 0, \text{otherwise.} \end{cases}$$

Therefore you have two random variables, let's denote them $X:=X_1$ and $Y := -X_2$ and you need to find PDF of $X+Y$. And you know their densities so you can just use the convolution of the sum as you wanted.

UPDATE.

So you can check your work I added my calculations of the $f_{X+Y}(y)$. I will use indicator function during integrations to make derivations shorter.

For now we have : $f_X(x) = \mathbf{1}_{\{0 \leq x \leq \ln 4\}}e^{-\frac{x}{2}}, f_Y(y) = \mathbf{1}_{\{-\ln4 \leq y \leq 0\}}e^{\frac{y}{2}}$

Using convolution, we get :

$$f_{X+Y}(y)=\int\limits_{\mathbb{R}}f_X(x)f_Y(y-x)dx = \int\limits_{\mathbb{R}}\mathbf{1}_{\{0 \leq x \leq \ln 4\}}e^{-\frac{x}{2}}\mathbf{1}_{\{-\ln4 \leq y-x \leq 0\}}e^{\frac{y-x}{2}}dx = \\ =e^{\frac{y}{2}} \int\limits_{\mathbb{R}}\mathbf{1}_{\{0 \leq x \leq \ln 4\}}e^{-\frac{x}{2}}\mathbf{1}_{\{y \leq x \leq \ln4+y\}}e^{-\frac{x}{2}}dx = e^{\frac{y}{2}}\int\limits_{\max\{0,y\}}^{\min\{\ln4, \ln4+y\}}e^{-x}dx$$

To evaluate this integral I will consider different cases.

If $0 \leq y \leq \ln4$, we have :

$$f_{X+Y}(y)=e^{\frac{y}{2}}\int\limits_{y}^{\ln4}e^{-x}dx=-\frac{1}{4}e^{\frac{y}{2}} + e^{-\frac{y}{2}}$$

If $-\ln4 \leq y < 0 $, we have :

$$f_{X+Y}(y)=e^{\frac{y}{2}}\int\limits_{0}^{\ln4+y}e^{-x}dx=e^{\frac{y}{2}}-\frac{1}{4}e^{-\frac{y}{2}}$$

If $y > \ln 4$ or $y < - \ln 4$, $f_{X+Y}(y)$ will be equal to $0$.

Finally,

$$f_{X+Y}(y) = \mathbf{1}_{\{0 \leq y \leq \ln 4 \}}(y) \cdot \left(-\frac{1}{4}e^{\frac{y}{2}} + e^{-\frac{y}{2}}\right) + \mathbf{1}_{\{-\ln 4 \leq y < 0 \}}(y) \cdot\left(e^{\frac{y}{2}}-\frac{1}{4}e^{-\frac{y}{2}}\right)$$

We can check that it's integrates to $1$ :

$$\int\limits_{\mathbb{R}}\mathbf{1}_{\{0 \leq y \leq \ln 4 \}}(y) \cdot \left(-\frac{1}{4}e^{\frac{y}{2}} + e^{-\frac{y}{2}}\right)dy = \int\limits_{0}^{\ln 4}(-\frac{1}{4}e^{\frac{y}{2}} + e^{-\frac{y}{2}})dy = \frac{1}{2},$$

$$\int\limits_{\mathbb{R}}\mathbf{1}_{\{-\ln 4 \leq y < 0 \}}(y) \cdot\left(e^{\frac{y}{2}}-\frac{1}{4}e^{-\frac{y}{2}}\right)dy = \int\limits_{-\ln 4}^{0}(e^{\frac{y}{2}}-\frac{1}{4}e^{-\frac{y}{2}})dy = \frac{1}{2}$$

Hence, by additivity of the integral,

$$\int\limits_{\mathbb{R}}f_{X+Y}(y)dy=\frac{1}{2}+\frac{1}{2}=1$$

Without indicator function, we can rewrite it as follows :

$$f_{X+Y}(y)=\begin{cases}e^{\frac{y}{2}}-\frac{1}{4}e^{-\frac{y}{2}} , -\ln4 \leq y < 0 \\ -\frac{1}{4}e^{\frac{y}{2}} + e^{-\frac{y}{2}}, 0 \leq y \leq \ln 4 \\0, \text{otherwise}\end{cases}$$