Finding the Maximum of the Chi-Square density function

probabilityprobability distributionsproof-verification

Below is a problem which I did and I believe my answer is correct. I would like
somebody to confirm that (if true) and provide some additional comments about my style.
Thanks,
Bob
Problem:
Show that $\chi^2_v$ pdf has a maximum at $v – 2$ if $v > 2$.
Answer:
The $\chi^2_v$ pdf for $x >= 0$ is:
\begin{eqnarray*}
f_(x) &=& \begin{cases}
\frac{ x^{\frac{v}{2} – 1}e^{-\frac{x}{2}}} {2^{\frac{v}{2}} \Gamma(v/2)}
& \text{for } x >= 0 \\
0 & \text{otherwise} \\
\end{cases} \\
\end{eqnarray*}
\newline
Now to find its maximum we compute $f'(x)$.
\begin{eqnarray*}
f'(x) &=&
\frac{\big(-\frac{1}{2}\big)x^{\frac{v}{2} – 1}e^{-\frac{x}{2}} + ( \frac{v}{2} – 1) x^{\frac{v}{2} – 2}e^{-\frac{x}{2}}} {2^{\frac{v}{2}} \Gamma(v/2)} \\
\end{eqnarray*}
Now we set $f'(x) = 0$.
\begin{eqnarray*}
\frac{\big(-\frac{1}{2}\big)x^{\frac{v}{2} – 1}e^{-\frac{x}{2}} + ( \frac{v}{2} – 1) x^{\frac{v}{2} – 2}e^{-\frac{x}{2}}} {2^{\frac{v}{2}} \Gamma(v/2)} &=& 0 \\
\big(-\frac{1}{2}\big)x^{\frac{v}{2} – 1}e^{-\frac{x}{2}} + ( \frac{v}{2} – 1) x^{\frac{v}{2} – 2}e^{-\frac{x}{2}} &=& 0 \\
\big(-\frac{1}{2}\big)x^{\frac{v}{2} – 1} + ( \frac{v}{2} – 1) x^{\frac{v}{2} – 2} &=& 0 \\
\big(-\frac{1}{2}\big)x + \frac{v}{2} – 1 &=& 0 \\
x &=& v – 2 \\
\end{eqnarray*}
Now we know that $x = v – 2$ is an extreme point. The question is it a maximum
or a minimum. Since $f(0) = 0$ and $f(v-2) > 0$ we conclude that $x = v – 2$ is a maximum.

Best Answer

What you did makes a lot of sense, but what if it $v-2$ was a saddle point? A better way to see it is using the double derivative test, i.e.

\begin{equation} f'(x) = \frac{\big(-\frac{1}{2}\big)x^{\frac{v}{2} - 1}e^{-\frac{x}{2}} + ( \frac{v}{2} - 1) x^{\frac{v}{2} - 2}e^{-\frac{x}{2}}} {2^{\frac{v}{2}} \Gamma(v/2)} \end{equation} Then \begin{equation} f''(x) = \frac{1}{2^{\frac{v}{2}} \Gamma(v/2)} \dfrac{x^{\frac{v}{2}-3}\left(x^2+\left(4-2v\right)x+v^2-6v+8\right)\mathrm{e}^{-\frac{x}{2}}}{4} \end{equation} At the extremum, we have \begin{equation} f''(v - 2) = \frac{(v-2)^{\frac{v}{2}-3}}{4(2^{\frac{v}{2}} \Gamma(v/2))} ( (v-2)^2 -2(v-2)(v-2) + (v-2)(v-4) )e^{-\frac{v-2}{2}} \end{equation} that is \begin{equation} f''(v - 2) = \frac{(v-2)^{\frac{v}{2}-3}e^{-\frac{v-2}{2}}}{4(2^{\frac{v}{2}} \Gamma(v/2))} ( -(v-2)^2 + (v-2)(v-4) ) \end{equation} which is \begin{equation} f''(v - 2) = -2 \frac{(v-2)^{\frac{v}{2}-3}e^{-\frac{v-2}{2}}}{4(2^{\frac{v}{2}} \Gamma(v/2))} (v-2) \end{equation} For $v > 2$ it is easy to see that $f''(v-2) < 0$, hence it is a maximum.