Finding the eigenvalues of a linear transformation without using the matrix of the linear transformation

eigenvalues-eigenvectorslinear algebralinear-transformations

Define the linear transformation $L$ as

$L: \mathbb{R}^3 \rightarrow \mathbb{R}^3: x \rightarrow x – \langle x, a \rangle b$

Let $a, b \in \mathbb{R}^3$ such that $\langle a, b \rangle = 2$ and let $\langle .,. \rangle $ be the standard inner product of $\mathbb{R}^3$.

How would I find the eigenvalues of the linear transformation without using the matrix of the linear transformation?

Best Answer

It appears this all works over $\Bbb R^n$:

Given that

$L(x) = x - \langle x, a \rangle b, \tag 0$

if

$\langle a, x \rangle = 0, \tag 1$

then

$L(x) = x, \tag 2$

that is, $x$ is an eigenvector of $L$ associated with eigenvalue

$\lambda = 1; \tag 3$

thus the entire $n - 1$ dimensional subspace

$a^\bot \subset \Bbb R^n \tag 4$

is the $1$-eigenspace of $L$. Now if

$x = \alpha b, \; \alpha \ne 0, \tag 5$

then

$L(x) = L(\alpha b) = \alpha b - \langle \alpha b, a \rangle b = \alpha b - \alpha \langle b, a \rangle b = \alpha b - 2\alpha b = -\alpha b; \tag 6$

that is, $\alpha b$ is a $-1$-eigenvector of $L$; also

$\langle b, a \rangle = 2 \ne 0 \Longrightarrow b \notin a^\bot; \tag 7$

therefore

$\Bbb R^n = a^\bot + \{\alpha b, \alpha \in \Bbb R\}; \tag 8$

since $a^\bot$ and $b$ generate $\Bbb R^n$, there can be no other eigenvectors/eigenvalues, so we have found all the eigenvectors/eigenvalues of $L$.