Finding remainder using Fermat’s Little Theorm

arithmeticelementary-number-theorymodular arithmeticperfect-powers

Use Fermat's Little Theorem to find the remainder of $5^{15}$ divided by $1337$.

I know Fermat's Little Theorem, but failed to understand how to use it in this.

output.944

Best Answer

We'll forego using any 'heavy' theory and see what we can come up with to manually crank out the answer.

Anticipating what is to come we write out,

$\tag 1 \;(13 + k)10^2 \equiv k10^2 - 37 \pmod{1337}$

Getting to work,

$\tag 2 5^5 = 3125 = 3100 + 25$

Since $31 = 13\cdot2 + 5$,

$\tag 3 5^5 = (13*2 + 5) 10^2 + 25 = 2(13 + 3) 10^2 - 75$

and so by $\text{(1)}$,

$\tag 4 5^5 \equiv 2(3\cdot10^2-37)-75 \equiv 2 (263) -75\equiv 451 \pmod{1331} $

With the $\text{(4)}$ work behind us, and observing that

$\quad 451 = 450+1 \land 450 = 2 \cdot 3^2 \cdot 5^2$

we apply the binomial theorem,

$\tag 5 (2 \cdot 3^2 \cdot 5^2 + 1)^3= 2^3 \cdot 3^6 \cdot 5^6 + 3\cdot 2^2 \cdot 3^4 \cdot 5^4 + 3\cdot 2 \cdot 3^2 \cdot 5^2+ 1$

Lets us modulo reduce the first (and largest) term on the rhs of $\text{(5)}$ using mental arithmetic and $\text{(1)}$ and, at the start, $\text{(4)}$:

$\quad 2^3 \cdot 3^6 \cdot 5^6 \equiv 8 \cdot 9 \cdot 9 \cdot 9 \cdot 5 \cdot 451 =$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot 9 \cdot 2255 =$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot 9 \cdot (2300 -45) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot 9 \cdot (1000-37 -45) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot 9 \cdot 419 \cdot (-1) =$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot (3600 + 90 + 81) \cdot (-1) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot (2300 -37 + 90 + 81) \cdot (-1) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot (1000 - 37 -37 + 90 + 81) \cdot (-1) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot 9 \cdot 240 =$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot (2100 + 60) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot (800-37 +60) \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 9 \cdot (514) \cdot (-1) = $
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot (4500 + 90 + 36) \cdot (-1) \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot (3200 - 37 + 90 + 36) \cdot (-1) \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot (1900 -37 - 37 + 90 + 36) \cdot (-1) \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot (600 - 37 -37 - 37 + 90 + 36) \cdot (-1) = $
$\quad \quad \quad \quad \quad \quad \; \; 8 \cdot 615 \cdot (-1) = $
$\quad \quad \quad \quad \quad \quad \; \; 2 \cdot 4 \cdot 615 \cdot (-1) = $
$\quad \quad \quad \quad \quad \quad \; \; 2 \cdot (2400 +60) \cdot (-1) \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 2 \cdot (1160 - 37) \cdot (-1) \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 2 \cdot 214 \equiv $
$\quad \quad \quad \quad \quad \quad \; \; 428 \pmod{1337}$

Next we modulo reduce the second term on the rhs of $\text{(5)}$:

$\quad 3\cdot 2^2 \cdot 3^4 \cdot 5^4 =$
$\quad \quad \quad \quad \quad \quad \; \; 3^5 \cdot 50^2 =$
$\quad \quad \quad \quad \quad \quad \; \; 3^5 \cdot 2500 \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 3^5 \cdot (1200 -37) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 3^5 \cdot 174 \cdot (-1) =$
$\quad \quad \quad \quad \quad \quad \; \; 3^3 \cdot (1500 + 30 + 36) \cdot (-1)\equiv$
$\quad \quad \quad \quad \quad \quad \; \; 3^3 \cdot (200 - 37 + 30 + 36) \cdot (-1)=$
$\quad \quad \quad \quad \quad \quad \; \; 3^3 \cdot 229 \cdot (-1)=$
$\quad \quad \quad \quad \quad \quad \; \; 3^1 \cdot (1800 + 180 + 81) \cdot (-1)=$
$\quad \quad \quad \quad \quad \quad \; \; 3^1 \cdot (2000 + 61) \cdot (-1) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 3^1 \cdot 724 \cdot (-1) \equiv$
$\quad \quad \quad \quad \quad \quad \; \; 502 \pmod{1337}$

After modulo reducing the final two terms $\text{(5)}$ we can write

$\tag 6 5^{15} \equiv 451^3 \equiv 428 + 502 + 13 + 1 \equiv 944 \pmod{1337}$

Related Question