Finding maximum likelihood estimator of $\theta$

maximum likelihoodparameter estimationstatistical-inferencestatisticsuniform distribution

Let $X_1, \ldots, X_n$ be independent random variables with density

$$
f(x;\theta) =\begin{cases} \frac{1}{2i\theta} &, -i(\theta-1)\le x \le i(\theta+1)
\\ 0&, \text{ elsewhere }
\end{cases}
$$
for $0<\theta<\infty$ and $i=1,2,\ldots,n$.

Find the maximum likelihood estimator of $\theta$.

My approach:

$$f(x;\theta) = \frac{1}{2i\theta} I(_{-i(\theta-1)\le x \le i(\theta+1)})$$

How do we talk about the maximum or minimum values to say about mle . please throw some light???

Best Answer

The density of $X_i$ is given by $$f_{X_i}(x \mid \theta) = (2i\theta)^{-1} \mathbb 1(-i(\theta-1) \le x_i \le i(\theta+1)).$$ Thus the joint density of the sample $\boldsymbol X = (X_1, X_2, \ldots, X_n)$ is $$\begin{align} f_{\boldsymbol X}(\boldsymbol x \mid \theta) &= \prod_{i=1}^n (2i\theta)^{-1} \mathbb 1(-i(\theta-1) \le x_i \le i(\theta+1)) \\ &= 2^n n! \theta^{-n} \prod_{i=1}^n \mathbb 1\left(\left|\frac{x_i}{i} - 1\right| \le \theta\right) \\ &= 2^n n! \theta^{-n} \mathbb 1 \left( \max_i \left|\frac{x_i}{i} - 1\right| \le \theta\right). \end{align}$$ hence the likelihood for $\theta$ given the sample is proportional to $$\begin{align} \mathcal L(\theta \mid \boldsymbol x) &\propto \theta^{-n} \mathbb 1 \left( \max_i \left|\frac{x_i}{i} - 1\right| \le \theta\right). \end{align}$$ If the indicator function is $1$, then $\mathcal L$ is monotonically decreasing in $\theta$. Therefore, the likelihood is maximized for a choice of $\theta$ that is as small as possible while allowing the indicator to remain $1$; i.e., $$\hat \theta = \max_i \left|\frac{x_i}{i} - 1\right|.$$ This function is evaluated by taking the sample $(x_1, x_2, \ldots, x_n)$, and calculating the modified sample $$\left(\frac{x_1}{1} - 1, \frac{x_2}{2} - 1, \ldots, \frac{x_n}{n} - 1\right).$$ The maximum absolute value is the MLE.

Related Question