Finding $\lim_{x \to 0} \left( \frac{\sin(x)-3\sinh(x)+2x}{x^2(\tanh(2x)+ \sin(x))} \right)$

calculusderivativeslimits

I am trying to evaluate the following limit:
$$L=\lim_{x \to 0} \left( \frac{\sin(x)-3\sinh(x)+2x}{x^2(\tanh(2x)+\sin(x))} \right)$$

Begin by rewriting the limit as:
$$L=\frac{\lim\limits_{x \to 0}\left(\cfrac{\sin(x)-3\sinh(x)+2x}{x^2} \right)}{\lim\limits_{x \to 0}(\tanh(2x)+\sin(x))} \tag{1}$$
Applying L'Hospital's Rule to the numerator only:
$$L=\frac{\lim\limits_{x \to 0}\left(\cfrac{\cos(x)-3\cosh(x)+2}{2x} \right)}{\lim\limits_{x \to 0}(\tanh(2x)+\sin(x))} \tag{2}$$
The numerator is still in an indeterminate form, applying L'Hopital to the numerator again:
$$L=\frac{\lim\limits_{x \to 0}\left(\cfrac{-\sin(x)-3\sinh(x)}{2} \right)}{\lim\limits_{x \to 0}(\tanh(2x)+\sin(x))} \tag{3}$$

Rewriting as a single limit:
$$L=-\frac{1}{2}\lim_{x \to 0}\frac{\sin(x)+3\sinh(x)}{\tanh(2x)+\sin(x)} \tag{4}$$
And applying L'Hospital's Rule…
$$L=-\frac{1}{2}\lim_{x \to 0}\left(\frac{\cos(x)+3\cosh(x)}{2\operatorname{sech}^2(2x)+\cos(x)} \right)=-\frac{2}{3} \tag{5}$$
But according to Wolfram Alpha, $L=-\frac{2}{9}$

So something must be wrong in my calculation (I guess it's the limit of a product bit)?

Best Answer

We can't separate the limit in this way and then apply l'Hospital's rule only to a single part.

In this case we can proceed as follows

$$\frac{\sin(x)-3\sinh(x)+2x}{x^2(\tanh(2x)+\sin(x))}= \frac{x}{\tanh(2x)+\sin(x)} \frac{\sin(x)-3\sinh(x)+2x}{x^3}$$

and use standard limit for this one

$$ \frac{x}{\tanh(2x)+\sin(x)} = \frac{1}{2\frac{\tanh(2x)}{2x}+\frac{\sin(x)}{x}} $$

and then apply l'Hospital's rule for the second part to obtain the result according to the product rule

$$\lim_{x\to x_0} f(x)g(x)=\lim_{x\to x_0} f(x)\cdot \lim_{x\to x_0} g(x)$$