Finding axes of steepest and shallowest curvature at turning point of a quadratic form

curvatureeigenvalues-eigenvectorslinear algebraquadratic-forms

I have a quadratic form, $f(\mathbf{x}) ={1\over 2}\mathbf{x}^{T}\mathbf{A}\mathbf{x} – \mathbf{bx} + c = 0$. The turning point, where $f'(\mathbf{x}) = \mathbf{A}\mathbf{x} – \mathbf{b} = 0,$ can be found using $\mathbf{x}_{\mathrm{T}} = \mathbf{A}^{-1}b$.

I need to find the axes of greatest and least curvature of this paraboloid at the turning point. Are these just the eigenvectors of $\mathbf{A}$ corresponding with the largest and smallest eigenvalue respectively?

The matrix A looks like a Hessian to my untrained eye, based on how it is calculated (as the weighted sum, for each vector in a set of vectors, of the outer product of the vector with itself), which maybe helps with measuring curvature?

Best Answer

Eigenvectors give only the direction of principal axes (for central conics and quadrics) not the principal curvature directions. There's a paper for finding Gaussian and mean curvatures for implicit surfaces. The standard results for general quadrics are summarized as follows:

Using matrix representation,

\begin{align} 0 &= F(x,y,z) \\ & \equiv \frac{1}{2} \begin{pmatrix} x & y & z & 1 \\ \end{pmatrix} \begin{pmatrix} a & h & g & i \\ h & b & f & j \\ g & f & c & k \\ i & j & k & d \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \\ \\ \nabla F &= \begin{pmatrix} a & h & g & i \\ h & b & f & j \\ g & f & c & k \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \\ \\ K &= -\frac{1}{|\nabla F|^4} \det \begin{pmatrix} a & h & g & i \\ h & b & f & j \\ g & f & c & k \\ i & j & k & d \end{pmatrix} \\ \\ H &= \frac{(\nabla F)^T \begin{pmatrix} a & h & g \\ h & b & f \\ g & f & c \end{pmatrix} (\nabla F)}{2|\nabla F|^3}- \frac{a+b+c}{2|\nabla F|} \\ \\ \kappa_{\pm} &= H \pm \sqrt{H^2-K} \end{align}

The principal directions or lines of curvature are not easy to solve, please refer to this paper for your further interest.

For standard paraboloids, the lines of curvature are as follows:

  • Elliptic paraboloid $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=\dfrac{2z}{c}$

$$\boldsymbol{x}= \begin{pmatrix} \frac{a}{c} \sqrt{a^2-b^2} \sinh u \cos v \\ \frac{b}{c} \sqrt{a^2-b^2} \cosh u \sin v \\ \frac{a^2-b^2}{4c} (\cosh 2u-\cosh 2v) \end{pmatrix}$$

  • Hyperbolic paraboloid $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=\dfrac{2z}{c}$

$$\boldsymbol{x}= \begin{pmatrix} \frac{a}{c} \sqrt{a^2+b^2} \sinh u \cosh v \\ \frac{b}{c} \sqrt{a^2+b^2} \cosh u \sinh v \\ \frac{a^2+b^2}{4c} (\cosh 2u-\cosh 2v) \end{pmatrix}$$

Analogous to quadratic polynomials:

\begin{align} \mathbb{A}^{T} &= \mathbb{A} \\ f(\boldsymbol{x}) &= \boldsymbol{x}^{T} \mathbb{A} \, \boldsymbol{x}+ \boldsymbol{b}^{T} \boldsymbol{x}+c \\ &= (\boldsymbol{x}-\boldsymbol{h})^{T} \mathbb{A} (\boldsymbol{x}-\boldsymbol{h})+k \\ \boldsymbol{h} &= -\frac{1}{2} \, \mathbb{A}^{-1} \boldsymbol{b} \\ k &= c-\frac{1}{4} \, \boldsymbol{b}^{T} \mathbb{A}^{-1} \, \boldsymbol{b} \\ \nabla f(\boldsymbol{x}) &= 2\mathbb{A} \, \boldsymbol{x}+\boldsymbol{b} \\ \nabla^{2} f(\boldsymbol{x}) &= 2\operatorname{tr}(\mathbb{A}) \end{align}

Note that $\boldsymbol{h}$ is the centre of central quadric (or conic) providing $\det \mathbb{A} \ne 0$.

For paraboloids, $$\det \mathbb{A}=0$$

See also another answer of mine for using Hessian matrix to find the curvature of superellipse.

Related Question