Finding asymptotic of $ \frac{e^{-n}}{(n-1)!}\int_0^\infty\prod_{k=1}^{n-1}(x+k)e^{-x}dx$

asymptoticsintegration

I'm interested in finding the asymptotic at $n\to\infty$ of
$$b_n:= \frac{e^{-n}}{(n-1)!}\int_0^\infty\prod_{k=1}^{n-1}(x+k)\,e^{-x}dx=e^{-n}\int_0^\infty\frac{e^{-x}}{x\,B(n;x)}dx$$
Using a consecutive application of Laplace' method, I managed to get (here)
$$b_n\sim(e-1)^{-n}$$
but this approach is not rigorous, and I cannot find even next asymptotic term, let alone a full asymptotic series.

So, my questions are:

  • how we can handle beta-function in this (and similar) expressions at $n\to\infty$
  • whether we can get asymptotic in a rigorous way ?

Best Answer

First approach. We have \begin{align*} b_n & = \frac{{{\rm e}^{ - n} }}{{\Gamma (n)}}\int_0^{ + \infty } {\frac{{\Gamma (x + n)}}{{\Gamma (x + 1)}}{\rm e}^{ - x} {\rm d}x} \\ & = \frac{{{\rm e}^{ - n} }}{{\Gamma (n)}}\int_0^{ + \infty } {\frac{1}{{\Gamma (x + 1)}}{\rm e}^{ - x} \left( {\int_0^{ + \infty } {s^{x + n - 1} {\rm e}^{ - s} {\rm d}s} } \right)\!{\rm d}x} \\ & = \frac{1}{{\Gamma (n)}}\int_0^{ + \infty } {\frac{1}{{\Gamma (x + 1)}}\left( {\int_0^{ + \infty } {t^{x + n - 1} {\rm e}^{ - {\rm e}t} {\rm d}t} } \right)\!{\rm d}x} \\ & = \frac{1}{{\Gamma (n)}}\int_0^{ + \infty } {t^{n - 1} {\rm e}^{ - {\rm e}t} \left( {\int_0^{ + \infty } {\frac{{t^x }}{{\Gamma (x + 1)}}{\rm d}x} } \right)\!{\rm d}t} . \end{align*} Employing Ramanujan's formula $$ \int_0^{ + \infty } {\frac{{t^x }}{{\Gamma (1 + x)}}{\rm d}x} = {\rm e}^t - \int_{ - \infty }^{ + \infty } {\frac{{{\rm e}^{ - t{\rm e}^y } }}{{y^2 + \pi ^2 }}{\rm d}y} , $$ yields the exact expression \begin{align*} b_n & = \frac{1}{{\Gamma (n)}}\int_0^{ + \infty } {t^{n - 1} {\rm e}^{ - ({\rm e} - 1)t} {\rm d}t} - \frac{1}{{\Gamma (n)}}\int_0^{ + \infty } {t^{n - 1} {\rm e}^{ - {\rm e}t} \int_{ - \infty }^{ + \infty } {\frac{{{\rm e}^{ - t{\rm e}^y } }}{{y^2 + \pi ^2 }}{\rm d}y}\, {\rm d}t} \\ & = \frac{1}{{({\rm e} - 1)^n }} - \int_{ - \infty }^{ + \infty } {\frac{1}{{({\rm e} + {\rm e}^y )^n }}\frac{1}{{y^2 + \pi ^2 }}{\rm d}y} . \end{align*} Since $$ \int_{ - \infty }^{ + \infty } {\frac{1}{{({\rm e} + {\rm e}^y )^n }}\frac{1}{{y^2 + \pi ^2 }}{\rm d}y} \le \frac{1}{{{\rm e}^n }}\int_{ - \infty }^{ + \infty } {\frac{{{\rm d}y}}{{y^2 + \pi ^2 }}} = \frac{1}{{{\rm e}^n }}, $$ we indeed have $$ b_n \sim \frac{1}{{({\rm e} - 1)^n }} $$ as $n\to +\infty$.

Second approach. Changing the order of summation and integration yields $$ \sum\limits_{n = 1}^\infty {b_n z^n } = z\int_0^{ + \infty } {\frac{{{\rm d}x}}{{({\rm e} - z)^{x + 1} }}} = \frac{z}{{({\rm e} - z)\log ({\rm e} - z)}} $$ for sufficiently small $z$. Now note that $$ \frac{z}{{({\rm e} - z)\log ({\rm e} - z)}} = \frac{{\rm e} - 1}{{({\rm e} - 1) - z}} + H(z) $$ where $H(z)$ is holomorphic in the disc $|z|<\mathrm{e}$. The first term may be expanded as $$ \frac{{\rm e} - 1}{{({\rm e} - 1) - z}} = \sum\limits_{n = 0}^\infty {\frac{1}{{({\rm e} - 1)^{n} }}z^n } . $$ On the other hand, the $n$th Maclaurin series coefficient of $H(z)$ is $\mathcal{O}((\mathrm{e}-\varepsilon)^{-n})$ by the Cauchy–Hadamard theorem for any $\varepsilon>0$ as $n\to+\infty$. Thus $$ b_n \sim \frac{1}{{({\rm e} - 1)^n }} $$ as $n\to +\infty$.

Related Question