Finding all function $f: \mathbb{R} \to \mathbb{R}$ satisfying $f\bigl(f(x)+y+z\bigr)=f(x)+f(y)-f(-z)+f(0)$

functional-equationsfunctions

Find all function $f: \mathbb{R} \to \mathbb{R}$ satisfying $f\bigl(f(x)+y+z\bigr)=f(x)+f(y)-f(-z)+f(0)$.

My attempt:

\begin{align}
&\text{Comparing }P(x, y, z) \text{ and } P(y, x, z): \\
&f\bigl(f(x)+y+z\bigr)=f\bigl(f(y)+x+z\bigr). \\
&\text{Substituting in the original F.E.: } \\
&f\bigl(f(0)+x+y+z\bigr)=f(x)+f(y)-f(-z)+f(0). \\
&P(x, y, 0): f\bigl(f(0)+x+y\bigr)=f(x)+f(y). \tag {1} \label {eqn1}\\
& \text{Let }f(0)=c. \\
& \implies f(c+x+y)=f(x)+f(y).\\
&P(0, 0, 0): f(c)=2c. \\
&P(x, y, -y): f(x+c)=f(x)+c. \\
&\therefore f(x+y+z)+c=f(x)+f(y)-f(-z)+c. \\
&\implies f(x+y+z)=f(x)+f(y)-f(-z). \\
&\therefore f(x+y+z)=f(x)+f(y)-f(-z)+c.(\because \eqref{eqn1})
\end{align}

Best Answer

It's straightforward to verify that for any $ c \in \mathbb R $ and any additive idempotent $ g : \mathbb R \to \mathbb R $ satisfying $ g ( c ) = c $, the function $ f : \mathbb R \to \mathbb R $ defined with $ f ( x ) = g ( x ) + c $ for all $ x \in \mathbb R $, satisfies $$ f \bigl ( f ( x ) + y + z \bigr ) = f ( x ) + f ( y ) - f ( - z ) + f ( 0 ) \tag 0 \label 0 $$ for all $ x , y , z \in \mathbb R $. To prove that these are the only solutions, consider an $ f : \mathbb R \to \mathbb R $ satisfying \eqref{0} for all $ x , y , z \in \mathbb R $, and let $ c = f ( 0 ) $. Substituting $ y + z $ for $ y $ and $ 0 $ for $ z $ in \eqref{0}, you get $$ f \bigl ( f ( x ) + y + z \bigr ) = f ( x ) + f ( y + z ) $$ for all $ x , y , z \in \mathbb R $, which comparing with \eqref{0} itself, yields $$ f ( y + z ) = f ( y ) - f ( - z ) + c \tag 1 \label 1 $$ for all $ y , z \in \mathbb R $. Interchanging $ y $ and $ z $ in \eqref{1} and comparing with \eqref{1} itself, you have $$ f ( y ) - f ( - z ) = f ( z ) - f ( - y ) $$ for all $ y , z \in \mathbb R $, which in particular for $ z = 0 $ implies $$ f ( - y ) = - f ( y ) + 2 c \tag 2 \label 2 $$ for all $ y \in \mathbb R $. Define $ g : \mathbb R \to \mathbb R $ with $ g ( x ) = f ( x ) - c $ for all $ x \in \mathbb R $. Then you have $ g ( 0 ) = 0 $, while \eqref{2} implies $$ g ( - y ) = - g ( y ) \tag 3 \label 3 $$ for all $ y \in \mathbb R $. By \eqref{1} and \eqref{3}, you get $$ g ( y + z ) = g ( y ) + g ( z ) \tag 4 \label 4 $$ for all $ y , z \in \mathbb R $; i.e. $ g $ is additive. \eqref{0} becomes $$ g \bigl ( g ( x ) + y + z + c \bigr ) + c = g ( x ) + c + g ( y ) + c - g ( - z ) - c + c \text , $$ which using \eqref{3} and \eqref{4} implies $$ g \bigl ( g ( x ) \bigr ) + g ( y ) + g ( z ) + g ( c ) = g ( x ) + g ( y ) + g ( z ) + c \text , $$ for all $ x , y , z \in \mathbb R $, or $$ g \bigl ( g ( x ) \bigr ) + g ( c ) = g ( x ) + c \tag 5 \label 5 $$ for all $ x \in \mathbb R $. Setting $ x = 0 $ in \eqref{5} you get $ g ( c ) = c $, and therefore \eqref{5} imples $$ g \bigl ( g ( x ) \bigr ) = g ( x ) $$ for all $ x \in \mathbb R $; i.e. $ g $ is idempotent, and we're done.


The characterization given above is the best you can hope for. Without further assumptions on $ f $, there are uncountably many wild solutions. Take a look at "Overview of basic facts about Cauchy functional equation" to get more information about the matter. In case you have regularity assumptions (like continuity, local boundedness or measurability) on $ f $, $ g $ will be regular, too, and thus it must be of the form $ g ( x ) = a x $ for some constant $ a \in \mathbb R $ and all $ x \in \mathbb R $. By idempotency of $ g $, you get $ a ^ 2 = a $, and therefore $ a \in \{ 0 , 1 \} $. As you also have $ g ( c ) = c $, $ a = 0 $ is only possible if $ c = 0 $. Therefore, the only regular solutions of the problem are those of the form $ f ( x ) = x + c $ for some constant $ c \in \mathbb R $, and the constant zero function $ f ( x ) = 0 $.

To characterize all the possible $ g $ above when no further assumptions hold, consider a Hamel basis $ \mathcal H $ of $ \mathbb R $ over $ \mathbb Q $, which contains $ c $ in case $ c \ne 0 $. Partition $ \mathcal H $ into two subsets $ \mathcal X $ and $ \mathcal Y $, such that $ \mathcal Y $ contains $ c $ if $ c \ne 0 $. Consider any $ h : \mathcal X \to \operatorname {span} _ { \mathbb Q } ( \mathcal Y ) $, and define $ g $ to be the unique $ \mathbb Q $-linear function on $ \mathbb R $ which simultaneously extends $ h $ and $ \operatorname {Id} _ { \mathcal Y } $. Then $ g $ will be and additive idempotent function on $ \mathbb R $ with $ g ( c ) = c $. Conversely, given any such $ g $, the set of fixed point of $ g $ will be a $ \mathbb Q $-subspace of $ \mathbb R $. Considering a Hamel basis $ \mathcal Y $ of this set over $ \mathbb Q $ (which can be chosen so that it contains $ c $ if $ c \ne 0 $) and extending it to a Hamel basis of $ \mathbb R $ over $ \mathbb Q $, you can see that $ g $ is of the previously mentioned form.