Finding a path integral

analysiscalculuscomplex numberscomplex-analysisintegration

Consider a path

$$ L_1 \ : \quad
\frac{1}{2}+\epsilon \quad \rightarrow \quad
\frac{1}{2}+\epsilon+i(p+\epsilon) \quad \rightarrow \quad
\frac{1}{2}+i(p+\epsilon). $$

where $\epsilon>0$ is arbitrarily small and $p>0$ is fixed.

Question: Find the limit of the path integral
$$ \lim_{\epsilon\to 0^+} \Im\left(\int_{L_1} \frac{d}{ds} \log(s(s-1)) \, ds\right)$$

I tried the following:

First thought: Using fundamental theorem of calculus the path integral becomes

\begin{align*}
\int_{L_1} \frac{d}{ds} \log(s(s-1)) \, ds
&= \log\left[\left(\frac{1}{2}+i(p+\epsilon)\right)\left(-\frac{1}{2}+i(p+\epsilon)\right) \right] \\
&\quad -\log\left[\left(\frac{1}{2}+\epsilon\right) \left(-\frac{1}{2}+\epsilon\right) \right].
\end{align*}

Hence we have

$$ \int_{L_1} \frac{d}{ds} \log(s(s-1)) \, ds
= \log\left(-(p+\epsilon)^2-\frac{1}{4}\right)-\log\left(\epsilon^2-\frac{1}{4}\right)$$

So we get

$$\lim_{\epsilon\to 0^+} \Im\left(\int_{L_1} \frac{d}{ds} \log(s(s-1)) \, ds\right) = i\pi-i\pi = 0$$

But my Professor says that the answer should be $\pi$. Please help me.

Best Answer

Note that

\begin{align*} \operatorname{Im} \left( \int_{L_1} \frac{\mathrm{d}}{\mathrm{d}s} \log(s(s-1)) \, \mathrm{d}s \right) &= \operatorname{Im} \left( \int_{L_1} \left( \frac{1}{s} + \frac{1}{s-1} \right) \, \mathrm{d}s \right) \\ &= \operatorname{Im} \left( \int_{L_1} \frac{1}{s} \, \mathrm{d}s \right) + \operatorname{Im} \left( \int_{L_1} \frac{1}{s-1} \, \mathrm{d}s \right). \end{align*}

Now we invoke the following well-known fact that

$$ \operatorname{Im}\left( \int_{\gamma} \frac{\mathrm{d}z}{z - a} \right) = \text{[change of argument about $a$ along $\gamma$]} $$

for any piecewise $C^1$ path $\gamma$ not passing through $a$. This gives

\begin{align*} \operatorname{Im} \left( \int_{L_1} \frac{1}{s} \, \mathrm{d}s \right) &= \color{blue}{\arctan\left(2(p+\varepsilon)\right)}, \\ \operatorname{Im} \left( \int_{L_1} \frac{1}{s-1} \, \mathrm{d}s \right) &= \color{red}{-\arctan\left(2(p+\varepsilon)\right)}, \\ \end{align*}

see the picture below as well.

change of argument

Therefore, we have

$$ \operatorname{Im} \left( \int_{L_1} \frac{\mathrm{d}}{\mathrm{d}s} \log(s(s-1)) \, \mathrm{d}s \right) = 0 $$

and letting $\varepsilon \to 0^+$ still gives $0$.

Related Question