Find the value of $x$ from $\sin(x)+\cos(x) = \sqrt{2}\sin(5x)$

trigonometry

I used auxiliary argument method and converted into $\cos \left(\frac{\pi}{4}-x\right)=\cos \left(\frac{\pi}{2}-5 x\right)$ (by introducing $\sqrt{2}$ as auxiliary argument and then using $\cos(\pi/{4})\cos(x) + \sin(\pi/{4})\sin(x) = \cos(\pi/{4} – x)$ and using $\sin(5x) = \cos(\pi/{2} – 5x)$ )

But the answer isn't matching after using the formula for $\cos(\theta) = \cos(\alpha)$

I got $-\frac{\pi(8 n+3)}{24}, \frac{\pi(8 k+1)}{16}$ while the answer is $\frac{\pi(8 n+3)}{24}, \frac{\pi(8 k+1)}{16}$

Best Answer

Then

$$\begin{align*} \frac \pi 4 - x &= 2\pi k \pm \left(\frac\pi2 - 5x\right)\\ \frac \pi 4 - x&= 2\pi k +\frac \pi2 - 5x &\text{or}&&\frac \pi 4 - x&=2\pi k -\frac\pi2 + 5x\\ 4x &= 2\pi k +\frac{\pi}4&\text{or}&&-6x &= 2\pi k -\frac{3\pi}{4}\\ x &= \frac{\pi(8k+1)}{16}&\text{or} &&x&= -\frac{\pi(8k\color{red}-3)}{24}\\ &&&&&= \frac{\pi (8n+3)}{24} \end{align*}$$

Related Question