Find the radius of convergence of the alternating power series

power seriessequences-and-series

Consider the alternating series $ \sum_{n=1}^{\infty} (-1)^n \frac{5}{n^3} x^n $.

Find the radius of convergence of it.

Answer:

$a_n=(-1)^n \frac{5}{n^3} $

Root test:

$ \lim_{n \to \infty} \sqrt[n]{|a_n|}=\lim_{n \to \infty} \sqrt[n]{\frac{5}{n^3}}=5$

Ratio test:

$ \lim_{n \to \infty} |\frac{a_{n+1}}{a_n}|=\lim_{n \to \infty} |\frac{(n+1)^3}{n^3}|=1 $

So both limits are not equal.

But we know that if limits exists , then they will be equal.

So I am doing something wrong.

Help me

Best Answer

By roots test we have

$$ \lim_{n \to \infty} \sqrt[n]{|a_n|}=\lim_{n \to \infty} \sqrt[n]{\frac{5}{n^3}}=1$$

then the radius of convergence is $1$.

To check for the convergence we need to consider separately the cases $x=1$ and $x=-1$.