Find the norm $\|T\|$, $T^2$ and compare $\|T^2\|$ with $\| T \|^2$

functional-analysislp-spacesnormed-spaces

Consider the normed vector space $\ell^2$ of complex numbers with norm

$\|x\| =\left(\sum_{n=1}^{+\infty}|x_n|^2\right)^{1/2}$.

For every $x=(x_1, x_2, \dots) \in \ell^2$ and let $T(x) = (0,2x_1, x_2, 2x_3, x_4, \dots)$

Find the norm $\|T\|$.

It is easy to see that $T$ is linear operator and we show that $T$ is bounded:

\begin{align*}
||T(x_n)||_2 = ||(a_nx_n)||_2 = \sqrt{\sum_{i=1}^{\infty}|a_nx_n|^2}.
\end{align*}

where $a=(1, 2, 1, 2, \dots)$

Hence norm should be

$||T||=\sup_{n \in \mathbb{N}}|a_n|$ ?

Also, how do I find $T^2(x)$ and what is the difference between $\|T^2\|$ and $\| T \|^2$.

Best Answer

Hint. Let $x=(x_1,x_2,\ldots)$ and $a=(a_1,a_2,a_3,\ldots)=(2,1,2,\ldots)$.

We have, since $|a_n|\leq 2$ for all $n$, $$||Tx||_2^2=\sum_{n\geq 1} |a_n x_n|^2\leq 4\sum_{n\geq 1}|x_n|^2,$$ so $$||Tx||_2\leq 2||x||_2.$$ Now let $x=(1,0,0,\ldots)$, then $Tx=(0,2,0,0,\ldots)$, hence we have equality. We conclude that $||T||=2$.

Can you calculate what the operator $T^2$ and its norm is?

Related Question