Find the minimum natural number $n$, such that the equation $\lfloor \frac{10^n}{x}\rfloor=1989$ has integer solution $x$

ceiling-and-floor-functionsintegers

Find the minimum natural number $n$, such that the equation $\lfloor \frac{10^n}{x}\rfloor=1989$ has integer solution $x$.

My work-

$\frac{10^n}{x}-1<\lfloor \frac{10^n}{x}\rfloor≤\frac{10^n}{x}\Rightarrow\frac{10^n}{x}-1<1989≤\frac{10^n}{x}\Rightarrow\frac{10^n}{1990}<x≤\frac{10^n}{1989}$

I am unable to proceed beyond this. Any help or other method is appreciated.

Best Answer

Rewrite the equation as

$$\frac{10^n}{x} = 1989+\epsilon$$

where $0 < \epsilon < 1$ and $x$ is a positive integer.

Then $\dfrac{10^n}{1989 + \epsilon} = x$ and

$\dfrac{10^n}{1989}$ must be slightly larger than an integer.

The first few digits of $\dfrac{1}{1989}$ are $.00050276520864...$

$$\lfloor\dfrac{10^4}{5}\rfloor = 2000$$

$$\lfloor\dfrac{10^5}{50}\rfloor = 2000$$

$$\lfloor\dfrac{10^6}{502}\rfloor = 1992$$

$$\lfloor\dfrac{10^7}{5027}\rfloor = 1989$$

Related Question