Find the maximum and minimum value of $f(x)$

calculusfunctional-equationsmaxima-minima

$$f(x) = \sin x + \int_{-\frac \pi 2}^{\frac \pi 2} (\sin x + t\cos x)f(t)dt$$
Find the minimum and maximum value of $f(x)$.

My attempt:

Rewrite the functional equation as
$$f(x) = \sin x \left( 1 + \int_{-\frac \pi 2}^{\frac \pi 2} f(t)dt\right) + \cos x \int_{-\frac \pi 2}^{\frac \pi 2} tf(t)dt$$
Then differentiate both sides
$$f'(x) = \cos x \left( 1 + \int_{-\frac \pi 2}^{\frac \pi 2} f(t)dt\right) – \sin x \int_{-\frac \pi 2}^{\frac \pi 2} tf(t)dt$$
for maxima/minima, $f'(x)$ = 0
$$\cos x \left( 1 + \int_{-\frac \pi 2}^{\frac \pi 2} f(t)dt\right) = \sin x \int_{-\frac \pi 2}^{\frac \pi 2} tf(t)dt$$
I got stuck at this point.

Best Answer

I found a solution. Since $$f(x) = \sin x \left( 1 + \int_{-\frac \pi 2}^{\frac \pi 2} f(t)dt\right) + \cos x \int_{-\frac \pi 2}^{\frac \pi 2} tf(t)dt$$ We can rewrite it as $$f(x) = A\sin x + B\cos x$$ This gives us the equations $$\begin{gather} A = 1 + \int_{-\frac \pi 2}^{\frac \pi 2}f(t)dt \tag{1} \\ B = \int_{-\frac \pi 2}^{\frac \pi 2} tf(t)dt \tag{2} \end{gather}$$

Using some integration properties, it is easy to see that $\int_{-\frac \pi 2}^{\frac \pi 2}f(t) = \int_{-\frac \pi 2}^{\frac \pi 2}B\cos t dt$ and $\int_{-\frac \pi 2}^{\frac \pi 2}tf(t)dt = \int_{-\frac \pi 2}^{\frac \pi 2}At\sin t dt$. Evaluating these integrals and substituting in the equations, they simplify to $$\begin{gather} A = 1 + 2B \tag{1} \\ B = 2A \tag{2} \end{gather}$$ Solving this system gives $A = -\frac 13$ and $B = -\frac 23$. Thus $$f(x) = -\frac 13 \sin x - \frac 23 \cos x$$

The maximum and minimum values of $f(x)$ are $\frac{\sqrt{5}}{3}$ and $-\frac{\sqrt{5}}{3}$ respectively.

Related Question