Find the Matrix in the Simple Iteration Method for Nonlinear Systems

algorithmslinear algebranonlinear systemnumerical linear algebranumerical methods

I'm trying to write a c++ programme to find the solutions to a nonlinear system using the simple iteration method described on page 120 here. It says:
Given a system of nonlinear equations

$$\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{m}\right)=0 \\
f_{2}\left(x_{1}, \ldots, x_{m}\right)=0 \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{m}\right)=0
\end{array}\right.$$

If we let
$$\mathbf{F}=\left(\begin{array}{c}
f_{1}(\mathbf{x}) \\
f_{2}(\mathbf{x}) \\
\vdots \\
f_{m}(\mathbf{x})
\end{array}\right): \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$$

Then we can rewrite the first expression as $\mathbf{F}(\mathbf{x}) = 0, \qquad \mathbf{x} = \mathbf{G}(\mathbf{x}) \qquad \mathbf{G}: \mathbb{R}^m \to \mathbb R^m$.

Solution $\boldsymbol{\alpha}: \boldsymbol{\alpha}=\mathbf{G}(\boldsymbol{\alpha})$ is called a fixed point of G.
Example: $\mathbf{F}(\mathbf{x})=0 \space ,$
$\mathbf{x}=\mathbf{x}-A \mathbf{F}(\mathbf{x})=\mathbf{G}(\mathbf{x}) \quad$ for some non singular matrix $A \in \mathbb{R}^{m \times m}$.

Iteration:
initial guess $x_{0}$
$$
\mathbf{x}_{n+1}=\mathbf{G}\left(\mathbf{x}_{n}\right), \quad n=0,1,2, \ldots
$$

An example is given on page 135.

Solve
$\left\{\begin{array}{l}f_{1} \equiv 3 x_{1}^{2}+4 x_{2}^{2}-1=0 \\ f_{2} \equiv x_{2}^{3}-8 x_{1}^{3}-1=0\end{array}, \text { for } \boldsymbol{\alpha} \text { near }\left(x_{1}, x_{2}\right)=(-.5, .25)\right.$

The iterative solution given is
$$
\left[\begin{array}{c}
x_{1, n+1} \\
x_{2, n+1}
\end{array}\right]=\left[\begin{array}{c}
x_{1, n} \\
x_{2, n}
\end{array}\right]-\left[\begin{array}{cc}
.016 & -.17 \\
.52 & -.26
\end{array}\right]\left[\begin{array}{c}
3 x_{1, n}^{2}+4 x_{2, n}^{2}-1 \\
x_{2, n}^{3}-8 x_{1, n}^{3}-1
\end{array}\right]
$$

The notes don't explain how to find the matrix A. How can I find the matrix A?

Best Answer

They are using the inverse of the Jacobian of the system. We have

$$F(x_1, x_2) = \begin{bmatrix} \dfrac{\partial f_1}{\partial x_1} & \dfrac{\partial f_1}{\partial x_2} \\ \dfrac{\partial f_2}{\partial x_1} & \dfrac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 6 x_1 & 8 x_2 \\ -24 x_1^2& 3 x_2^2 \end{bmatrix}$$

Using the given starting point $(x_1(0), x_2(0)) = (-0.5, 0.25)$, we have

$$F(-0.5, 0.25) = \begin{bmatrix} -3. & 2. \\ -6. & 0.1875 \end{bmatrix} \implies F^{-1}(-0.5, 0.25) =\begin{bmatrix} 0.0163934 & -0.174863 \\ 0.52459 & -0.262295 \end{bmatrix}$$

Related Question