Find the limsup and liminf of a sequence of intervals

elementary-set-theorylimsup-and-liminfprobability

Let $A_n$ = ( $\frac{-1}{n}, 1+\frac{n-1}{n}$]

How would you determine the limsup $A_n$ and liminf $A_n$?

I am trying to use the follow definitions for limsup and liminf respectively:
$$
\bigcap_{N=1}^\infty \bigcup_{n\ge N} A_n
$$

$$
\bigcup_{N=1}^\infty \bigcap_{n\ge N} A_n
$$

I was thinking the limsup $A_n$ would be the interval contained in all $A_n$ (the null set), and liminf $A_n$ would be the interval contained in at least one $A_n$, (-1,2]. This is based off my understanding of lim sup/inf and im hoping someone can explain this using the definition

Best Answer

Note that $A_n=\left(-\frac1n,2-\frac1n\right]=-\frac1n+(-1,2]$. So, if $N\in\mathbb N$,$$\bigcup_{n\geqslant N}A_n=\left(-\frac1N,2\right)$$and therefore$$\limsup_nA_n=\bigcap_{N\in\mathbb N}\left(-\frac1N,2\right)=[0,2).$$On the other hand, if $N\in\mathbb N$,$$\bigcap_{n\geqslant N}A_n=\left[0,2-\frac1N\right]$$and therefore$$\liminf_n=\bigcup_{N\in\mathbb N}\left[0,2-\frac1N\right]=[0,2)$$too.