Find the limit of the expression $\lim_{x\to 0}\left(\frac{\sin x}{\arcsin x}\right)^{1/\ln(1+x^2)}$

limitsreal-analysistaylor expansion

Limit: $\lim_{x\to 0}\left(\dfrac{\sin x}{\arcsin x}\right)^{1/\ln(1+x^2)}$ I have tried to do this: it is equal to $e^{\lim\frac{\log{\frac{\sin x}{\arcsin x}}}{\log(1+x^2)}}$, but I can't calculate this with the help of l'Hopital rule or using Taylor series, because there is very complex and big derivatives, so I wish to find more easier way.
$$\lim_{x\rightarrow 0}{\frac{\log{\frac{\sin x}{\arcsin x}}}{\log(1+x^2)}} = \lim_{x\rightarrow 0}\frac{\log1 + \frac{-\frac{1}{3}x^2}{1+\frac{1}{6}x^2+o(x^2)}}{\log(1+x^2)} = \lim_{x\rightarrow0}\frac{\frac{-\frac{1}{3}x^2}{1+\frac{1}{6}x^2+o(x^2)} + o(\frac{-\frac{1}{3}x^2}{1+\frac{1}{6}x^2+o(x^2)})}{x^2+o(x^2)}$$ using Taylor series. Now I think that it's not clear for me how to simplify $o\left(\frac{-\frac{1}{3}x^2}{1+\frac{1}{6}x^2+o(x^2)}\right)$.

Best Answer

HINT

By Taylor's series

$$\frac{\sin x}{\arcsin x}=\frac{x-\frac16x^3+o(x^3)}{x+\frac16x^3+o(x^3)}=\frac{1-\frac16x^2+o(x^2)}{1+\frac16x^2+o(x^2)}=$$$$=\left(1-\frac16x^2+o(x^2)\right)\left(1+\frac16x^2+o(x^2)\right)^{-1}$$

Can you continue form here using binomial series for the last term?