Find the equation of a pair of straight lines using the joint equation

analytic geometry

Could you please explain, how to find the equations of two straight lines using the joint equation – $ax^2+2hxy+by^2+2gx+2fy+c=0$.

To convert the given pair of straight lines into the joint equation, I would just multiply the two equations as given below:

Let $a_1x+b_1y+c_1=0$ and $a_2x+b_2y+c_2=0$ be two lines. To find the joint equation, I would just multiply them and simplify $(a_1x+b_1y+c_1)(a_2x+b_2y+c_2)=0$. But I wish to know how to do the reverse process, i.e., finding the equations of two lines from the joint equation.

Best Answer

In general, the equation $\ ax^2+2hxy+by^2+2gx+2fy+c=0\ $ defines a conic, of which two intersecting straight lines is one (degenerate) special case. One standard way to determine what form of conic the equation represents is to diagonalise the matrix, $$ A=\pmatrix{a&h\\h&b}\ $$ by finding its eigenvalues and egenvectors. Let $\ \lambda_1, \lambda_2\ $ be the eigenvalues, and $\ \boldsymbol{e}_1, \boldsymbol{e}_2\ $ the corresponding normalised eigenvectors, which can be chosen so that $\ \boldsymbol{e}_1=\pmatrix{\cos\theta\\-\sin\theta}\ $ and $\ \boldsymbol{e}_2=\pmatrix{\sin\theta\\\cos\theta}\ $ for some angle $\ \theta\ $. If $\ \Theta\ $ is the matrix with columns $\ \boldsymbol{e}_1\ $ and $\ \boldsymbol{e}_2\ $, then $\ \Theta\ $ is a rotation matrix, with $\ \Theta^{-1} = \Theta^\top\ $, and $$ \Theta^\top A\Theta = \pmatrix{\lambda_1 & 0\\0&\lambda_2}\ . $$ Now, the equation we are interested in can be written as \begin{eqnarray} 0&=& \boldsymbol{x}^\top A\boldsymbol{x} + 2\boldsymbol{g}^\top\boldsymbol{x} + c\\ &=& \left(\Theta^\top \boldsymbol{x}\right)^\top\Theta^\top A\Theta\left(\Theta^\top\boldsymbol{x}\right) + 2\left(\Theta^\top\boldsymbol{g}\right)^\top \Theta^\top\boldsymbol{x}+c\\ &=&\boldsymbol{x}'^\top\Lambda\boldsymbol{x}'+2\boldsymbol{g}'^\top\boldsymbol{x}'+c\ , \end{eqnarray} where $\ \boldsymbol{x}=\pmatrix{x\\y}\ $, $\ \boldsymbol{x}'=\Theta^\top\boldsymbol{x}\\$, $\ \Lambda = \pmatrix{\lambda_1 & 0\\0&\lambda_2}\ $, $\ \boldsymbol{g}=\pmatrix{g\\h}\ $, and $\ \boldsymbol{g}'=\Theta^\top\boldsymbol{g}\ $. The entries of $\ \boldsymbol{x}'\ $, $\ x_1'=x\cos\theta+y\sin\theta\ $, and $\ x_2'=-x\sin\theta+y\cos\theta\ $, are the coordinates of a point $P$ with respect to a set of axes that have been rotated clockwise through an angle $\ \theta\ $relative to the original axes, where $\ x\ $ and $ y\ $ are the coordinates of $P$ with respect to those original axes. It follows from above that the equation the the conic with respect to the new axes is \begin{eqnarray} 0 &=& \lambda_1 x_1'^2 + \lambda_2x_2'^2 +2g_1'x_1'+ 2g_2'x_2' + c\\ &=& \lambda_1\left(x_1' +\frac{g_1'}{\lambda_1}\right)^2 + \lambda_2\left(x_2' +\frac{g_2'}{\lambda_2}\right)^2 +c - \frac{g_1'^2}{\lambda_1}-\frac{g_2'^2}{\lambda_2}\ . \end{eqnarray} This is the equation of two intersecting straight lines if and only if $\ \lambda_1\ne0\ $, $\ \lambda_2\ne0\ $, $\ \lambda_1\ $ and $\ \lambda_2\ $ are of opposite sign, and $\ c - \frac{g_1'^2}{\lambda_1}-\frac{g_2'^2}{\lambda_2}=0\ $. If this is the case, suppose, without loss of generality, that $\ \lambda_1>0\ $ and $\ \lambda_2<0\ $. Then the above equation becomes \begin{eqnarray} 0 &=& \left(\sqrt{\lambda_1}x_1' + \frac{g_1'}{\sqrt{\lambda_1}}\right)^2- \left(\sqrt{-\lambda_2}x_2' - \frac{g_2'}{\sqrt{-\lambda_2}}\right)^2\\ &=& \left(\sqrt{\lambda_1}x_1' + \sqrt{-\lambda_2}x_2'+ \frac{g_1'}{\sqrt{\lambda_1}}-\frac{g_2'}{\sqrt{-\lambda_2}}\right)\\ &&\ \ \ \cdot \left(\sqrt{\lambda_1}x_1' - \sqrt{-\lambda_2}x_2'+ \frac{g_1'}{\sqrt{\lambda_1}}+\frac{g_2'}{\sqrt{-\lambda_2}}\right)\ , \end{eqnarray} and the equations of the two straight lines in the new coordinates are \begin{eqnarray} \sqrt{\lambda_1}x_1' + \sqrt{-\lambda_2}x_2'+ \frac{g_1'}{\sqrt{\lambda_1}}-\frac{g_2'}{\sqrt{-\lambda_2}}&=&0\ \ \mbox{, and}\\ \sqrt{\lambda_1}x_1' - \sqrt{-\lambda_2}x_2'+ \frac{g_1'}{\sqrt{\lambda_1}}+\frac{g_2'}{\sqrt{-\lambda_2}} &=&0\ . \end{eqnarray} Finally, substituting $\ x_1'=x\cos\theta+y\sin\theta\ $, and $\ x_2'=-x\sin\theta+y\cos\theta\ $ in these equations, we get the equations of the lines in the original coordinates: \begin{eqnarray} x\left(\sqrt{\lambda_1}\cos\theta - \sqrt{-\lambda_2}\sin\theta\right)&+ &y\left(\sqrt{\lambda_1}\sin\theta +\sqrt{-\lambda_2}\cos\theta\right)\\ &+& \frac{g_1'}{\sqrt{\lambda_1}}-\frac{g_2'}{\sqrt{-\lambda_2}}&=&0 \end{eqnarray} and \begin{eqnarray} x\left(\sqrt{\lambda_1}\cos\theta + \sqrt{-\lambda_2}\sin\theta\right)&+ &y\left(\sqrt{\lambda_1}\sin\theta -\sqrt{-\lambda_2}\cos\theta\right)\\ &+& \frac{g_1'}{\sqrt{\lambda_1}}+\frac{g_2'}{\sqrt{-\lambda_2}}&=&0\ . \end{eqnarray}