Find the distance between the points of two tangents along a circle

analytic geometrycirclesgeometrytangent line

I have the following problem: there is a circle with the $R = 5$ and center of the circle located on coordinate $(0, 0)$. I have two points $A(6, 8)$ and $B(-4, -6)$. From points, tangents to the circle were drawn. It is better illustrated as:

enter image description here

Let us denote points where tangents and circle intersect as $E, F, G, H$ (see the picture above for better the understandings). So we need to find the distance between E and F along the circle.

Best Answer

enter image description here

\begin{align} |OE|=|OF|= R&=5 ,\quad |OA|=10 ,\quad |OB|=2\sqrt{13} ,\quad |AB|=2\sqrt{74} ,\\ \triangle AOE:\quad |AE|&=5\sqrt3 ,\\ \triangle BFO:\quad |BF|&=3\sqrt3 . \end{align}

\begin{align} \angle EOF&=\angle AOB-\angle AOE-\angle FOB , \end{align}

\begin{align} \angle AOB&=\arccos\frac{|OA|^2+|OB|^2-|AB|^2}{2\cdot|OA|\cdot|OB|} = \pi-\arccos(\tfrac{18}{65}\sqrt{13}) ,\\ \angle AOE&= \arccos\frac{|OE|}{|OA|} =\tfrac\pi3 ,\\ \angle FOB&= \arccos\frac{|OF|}{|OB|} =\arccos(\tfrac5{26}\sqrt{13}) ,\\ \angle EOF&= \tfrac{2\pi}3-\arccos(\tfrac{18}{65}\sqrt{13}) -\arccos(\tfrac5{26}\sqrt{13}) \approx 1.234262917 . \end{align}

So, the distance between $E$ and $F$ along the circle, that is, the length of the arc $FE$ is

\begin{align} R\cdot\angle EOF&= 5\cdot(\tfrac{2\pi}3-\arccos(\tfrac{18}{65}\sqrt{13}) -\arccos(\tfrac5{26}\sqrt{13})) \approx 6.171314600 . \end{align}

Expression for $\angle EOF$ can be simplified to \begin{align} \angle EOF&= \arccos\frac{18+2\sqrt3}{65} , \end{align} hence by the cosine rule we can also find

\begin{align} |EF|&=\tfrac1{13}\sqrt{6110-260\sqrt3} \approx 5.78698130 . \end{align}