Find the derivative using the definition of derivative (limit).

derivativeslimits

Given $f(x)=\dfrac{5x+1}{2\sqrt{x}}$. Find $\dfrac{df(x)}{dx}=f'(x)$ using
the definition of derivative.

I have tried as below.

\begin{align*}
f'(x)&=\lim\limits_{h\to 0} \dfrac{f(x+h)-f(x)}{h}\\
&= \lim\limits_{h\to 0}
\dfrac{\dfrac{5(x+h)+1}{2\sqrt{x+h}}-\dfrac{5x+1}{2\sqrt{x}}}{h}\\
&= \lim\limits_{h\to 0}
\dfrac{\dfrac{\left(5(x+h)+1\right)\sqrt{x}-(5x+1)\sqrt{x+h}}{2\sqrt{x+h}\sqrt{x}}}{h}\\
&= \lim\limits_{h\to 0}
\dfrac{\dfrac{5x\sqrt{x}+5h\sqrt{x}+\sqrt{x}-5x\sqrt{x+h}-\sqrt{x+h}}{2\sqrt{x+h}\sqrt{x}}}{h}\\
\end{align*}

Now I can't find the limit. I confused how to simplify the limit. Anyone can give me hint to solve it?

Note:

We were asked to find this derivative using
$$f'(x)=\lim\limits_{h\to 0} \dfrac{f(x+h)-f(x)}{h}$$
instead of
$$f(x)=\dfrac{u(x)}{v(x)}\iff f'(x)=\dfrac{u'(x)v(x)-u(x)v'(x)}{v(x)^2}.$$

Best Answer

You can expand $f(x)$ as $\frac{5x+1}{2\sqrt x}=\frac52\sqrt x+\frac1{2\sqrt x}$, then differentiate the two.

$$\begin{align} f'(x)&=\left(\frac52\sqrt x\right)'+\left(\frac1{2\sqrt x}\right)'\\[1ex] &=\lim_{h\to0}\frac{\frac52\sqrt{x+h}-\frac52\sqrt x}h+\lim_{h\to0}\frac{\frac1{2\sqrt{x+h}}-\frac1{2\sqrt x}}h \end{align}$$

But if you don't already know or cannot directly use the fact that differentiation distributes over sums, you can instead expand the limand in your second line and regroup the terms in the numerator, then separate the limit into two. You would end up arriving at the same point either way:

$$\begin{align} f'(x)&=\lim_{h\to0}\frac{\frac{5(x+h)+1}{2\sqrt{x+h}}-\frac{5x+1}{2\sqrt x}}h\\[1ex] &=\lim_{h\to0}\frac{\frac52\sqrt{x+h}+\frac1{2\sqrt{x+h}}-\frac52\sqrt x+\frac1{2\sqrt x}}h\\[1ex] &=\lim_{h\to0}\frac{\frac52\sqrt{x+h}-\frac52\sqrt x}h+\lim_{h\to0}\frac{\frac1{2\sqrt{x+h}}-\frac1{2\sqrt x}}h \end{align}$$