Find Tangent Line Common to Two Hippopedes Curves

tangent line

Hello and forgive me for my lack of formality or perhaps poor wording. I am trying to derive the equations for tangent lines common to two Hippopedes ovals with different origins (see Booth's Curve):

$$(x^2+y^2)^2 = a^2x^2 + b^2y^2
$$

and

$$((x-h)^2+(y-k)^2)^2 = a^2(x-h)^2 + b^2(y-k)^2
$$

Here is an example:

Example

I believe the solution steps should be something along the lines of:

  1. Find derivatives of each curve ($y'_1$ and $y'_2$)
  2. Set derivatives equal to each other (Eq. 1)
  3. Write slope of line as $y_1-y_0/x_1-x_0$.
  4. Set slope equal to either $y'_1$ or $y'_2$. (Eq. 2)

then solve Eq. 1 and 2 simultaneously. I'm anticipating the math will be cumbersome, so any help would be greatly appreciated! Thank you.

Best Answer

These ovals have parameterisations

$(x(t),y(t))=(b\frac{ab\cos(t)}{b^2(\cos(t))^2+a^2(\sin(t))^2},a\frac{ab\sin(t)}{b^2(\cos(t))^2+a^2(\sin(t))^2})$ and $(x(t),y(t))=(h+b\frac{ab\cos(t)}{b^2(\cos(t))^2+a^2(\sin(t))^2},k+a\frac{ab\sin(t)}{b^2(\cos(t))^2+a^2(\sin(t))^2}).$

The dual curves are given by $(p(t),q(t))=(\frac{-y'(t)}{x'(t)y(t)-x(t)y'(t)},\frac{x'(t)}{x'(t)y(t)-x(t)y'(t)}).$

Now find the intersection points $P_i$ of the dual curves. Then the common tangents are the lines $x x(P_i)+y y(P_i)=1.$

The picture below shows only a few of the common tangents:

hpct3

Here are the dual curves. Note that they have nodes corresponding to the bitangents.

hpduals

To accentuate the node bitangent correspondence, here are both the curve and its dual, the point and the dual line (bitangent).

hpbitangent

The red intersection point $P_3: (l,m)$ corresponds to the red common tangent through the correspondence $(l:m:-1)$ to $lx +my-1=0.$

hpintersection

I used $a=0.5, b=2.3, h=2.95, k=0.85$ with the following to get the plot

curve(((a^2*b*sin(t)*(2*a^2*cos(t)*sin(t)-2*b^2*cos(t)*sin(t)))  /(a^2*sin(t)^2+b^2*cos(t)^2)^2  -(a^2*b*cos(t))/(a^2*sin(t)^2+b^2*cos(t)^2))  /((a^2*b*sin(t)        *((-(a*b^2*sin(t))/(a^2*sin(t)^2+b^2*cos(t)^2))         -(a*b^2*cos(t)*(2*a^2*cos(t)*sin(t)-2*b^2*cos(t)*sin(t)))          /(a^2*sin(t)^2+b^2*cos(t)^2)^2))   /(a^2*sin(t)^2+b^2*cos(t)^2)   -(a*b^2*cos(t)      *((a^2*b*cos(t))/(a^2*sin(t)^2+b^2*cos(t)^2)       -(a^2*b*sin(t)*(2*a^2*cos(t)*sin(t)-2*b^2*cos(t)*sin(t)))        /(a^2*sin(t)^2+b^2*cos(t)^2)^2))    /(a^2*sin(t)^2+b^2*cos(t)^2)),((-(a*b^2*sin(t))/(a^2*sin(t)^2+b^2*cos(t)^2))  -(a*b^2*cos(t)*(2*a^2*cos(t)*sin(t)-2*b^2*cos(t)*sin(t)))   /(a^2*sin(t)^2+b^2*cos(t)^2)^2)  /((a^2*b*sin(t)        *((-(a*b^2*sin(t))/(a^2*sin(t)^2+b^2*cos(t)^2))         -(a*b^2*cos(t)*(2*a^2*cos(t)*sin(t)-2*b^2*cos(t)*sin(t)))          /(a^2*sin(t)^2+b^2*cos(t)^2)^2))   /(a^2*sin(t)^2+b^2*cos(t)^2)   -(a*b^2*cos(t)      *((a^2*b*cos(t))/(a^2*sin(t)^2+b^2*cos(t)^2)       -(a^2*b*sin(t)*(2*a^2*cos(t)*sin(t)-2*b^2*cos(t)*sin(t)))        /(a^2*sin(t)^2+b^2*cos(t)^2)^2))    /(a^2*sin(t)^2+b^2*cos(t)^2)),t,0,2pi)
curve(((a^2*b*sin(t)*(2*a^2*cos(t)*sin(t)-2*b^2*cos(t)*sin(t)))  /(a^2*sin(t)^2+b^2*cos(t)^2)^2  -(a^2*b*cos(t))/(a^2*sin(t)^2+b^2*cos(t)^2))  /(((a^2*b*sin(t))/(a^2*sin(t)^2+b^2*cos(t)^2)+k)   *((-(a*b^2*sin(t))/(a^2*sin(t)^2+b^2*cos(t)^2))    -(a*b^2*cos(t)*(2*a^2*cos(t)*sin(t)-2*b^2*cos(t)*sin(t)))     /(a^2*sin(t)^2+b^2*cos(t)^2)^2)   -((a^2*b*cos(t))/(a^2*sin(t)^2+b^2*cos(t)^2)    -(a^2*b*sin(t)*(2*a^2*cos(t)*sin(t)-2*b^2*cos(t)*sin(t)))     /(a^2*sin(t)^2+b^2*cos(t)^2)^2)    *((a*b^2*cos(t))/(a^2*sin(t)^2+b^2*cos(t)^2)+h)), ((-(a*b^2*sin(t))/(a^2*sin(t)^2+b^2*cos(t)^2))  -(a*b^2*cos(t)*(2*a^2*cos(t)*sin(t)-2*b^2*cos(t)*sin(t)))   /(a^2*sin(t)^2+b^2*cos(t)^2)^2)  /(((a^2*b*sin(t))/(a^2*sin(t)^2+b^2*cos(t)^2)+k)   *((-(a*b^2*sin(t))/(a^2*sin(t)^2+b^2*cos(t)^2))    -(a*b^2*cos(t)*(2*a^2*cos(t)*sin(t)-2*b^2*cos(t)*sin(t)))     /(a^2*sin(t)^2+b^2*cos(t)^2)^2)   -((a^2*b*cos(t))/(a^2*sin(t)^2+b^2*cos(t)^2)    -(a^2*b*sin(t)*(2*a^2*cos(t)*sin(t)-2*b^2*cos(t)*sin(t)))     /(a^2*sin(t)^2+b^2*cos(t)^2)^2)    *((a*b^2*cos(t))/(a^2*sin(t)^2+b^2*cos(t)^2)+h)),t,0,2pi)

There are ways to get the implicit equations defining the dual curves (I'd need to read up on them), and you could further use grobner bases.

The first has equation $a^4b^{10}x^6+3a^6b^8x^4y^2+3a^8b^6x^2y^4+a^{10}b^4y^6+(8a^6b^6-8a^4b^8-a^2b^{10})x^4+(-20a^8b^4+38a^6b^6-20a^4b^8)x^2y^2+(-a^{10}b^2-8a^8b^4+8a^6b^6)y^4+(16a^8b^2-32a^6b^4+8a^4b^6+8a^2b^8)x^2+(8a^8b^2+8a^6b^4-32a^4b^6+16a^2b^8)y^2-16a^6b^2+32a^4b^4-16a^2b^6=0$

Related Question