Find symmetric matrix containing no 0’s, given eigenvalues

eigenvalues-eigenvectorslinear algebramatricesorthogonal matricessymmetric matrices

I'm preparing for a final by going through the sample exam, and have been stuck on this:

$$Produce\ symmetric\ matrix\ A ∈ R^{3×3},\ containing\ no\ zeros.\ \\
A\ has\ eigenvalues\ λ_1 = 1,\ λ_2 = 2,\ λ_3 = 3$$

I know $A = S^{-1}DS$, where A is similar to the diagonal matrix D, and S is orthogonal.
The diagonal entries of D are the eigenvalues of A.

I also know that A & D will have the same determinant, eigenvalues, characteristic polynomial, trace, rank, nullity, etc. I am not sure where to go from here though. How cna A be found with only the two pieces of information? It seems like too little information is given…

Best Answer

You are correct in observing that "too little" information is given in the sense that there are infinitely many such matrices. But you need to produce just one. So start with the diagonal matrix $D = \operatorname{diag}(1,2,3)$ and conjugate it by a simple (but not too simple) orthogonal matrix $S$. You don't want $S$ to be a block matrix because then $S^{-1} D S$ will also be a block matrix and so will have zeroes. For example, we can take

$$ S = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix}, S^{-1} = S^T = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0\end{pmatrix} $$

and define

$$ A = S^{-1} D S = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0\end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0\end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & \frac{2}{\sqrt{6}} & -\frac{4}{\sqrt{6}} \\ -\frac{3}{\sqrt{2}} & \frac{3}{\sqrt{2}} & 0 \end{pmatrix} \\ = \begin{pmatrix} \frac{1}{3} + \frac{2}{6} + \frac{3}{2} & \frac{1}{3} + \frac{2}{6} - \frac{3}{2} & \frac{1}{3} - \frac{4}{6} \\ \frac{1}{3} + \frac{2}{6} - \frac{3}{2} & \frac{1}{3} + \frac{2}{6} + \frac{3}{2} & \frac{1}{3} - \frac{4}{6} \\ \frac{1}{3} - \frac{4}{6} & \frac{1}{3} - \frac{4}{6} & \frac{1}{3} + \frac{8}{6} \end{pmatrix} = \begin{pmatrix} \frac{13}{6} & -\frac{5}{6} & -\frac{1}{3} \\ -\frac{5}{6} & \frac{13}{6} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{5}{3} \end{pmatrix}. $$

Then $A$ is symmetric and has eigenvalues $1,2,3$ (because it is similar to $D$).

Related Question