Find Radius of convergence of the given power series

complex-analysispower series

Find the radius of convergence of the power series $\displaystyle \sum_{n=1}^{\infty} \frac{n+1}{n!} z^{n^3}$.

Let, $\displaystyle a_n=\frac{n+1}{n!} z^{n^3}$.

Then, $\displaystyle \left|\frac{a_{n+1}}{a_n}\right|=\frac{n+2}{(n+1)^2}|z|^{3n(n+1)+1}\longrightarrow 0$ for all $z\in \Bbb C$. So radius of convergence is $\infty$. Is it correct?

Best Answer

Your limit with the ratio test, tends to $0$ only if $|z|\le 1$. Indeed, if $|z|>1$, any polynomial $p(n)$ is $o\bigl(|z|^n\bigr)$, and a fortiori is $\:o\bigl(|z|^{3n(n+1)+1}\bigr)$.