Find $P$ such that $P’ | P$

calculuspolynomials

I want to know how to answer this question:

Find all polynomial in $\mathbb{R}[X]$ such that the derivative $P' \ | \ P$.

My effort:

We know that

  • An $n$ degree polynomial has $n$ roots in $\mathbb{C}$.

  • $P(x) = P'(x) \cdot (ax+b).$

Thus we can suppose that
$$P' = b(x-a_1)(x-a_2)\dots(x-a_{n-1}),$$
and
$$P = c(x-a_1)(x-a_2)\dots(x-a_{n-1}) (x-a_{n})$$
where $b, c\in \mathbb{R}$ and $a_1,\dots,a_n \in \mathbb{C}$.
Take the derivative we have
$$P' = c(x-a_2)(x-a_3)\dots(x-a_n)+c(x-a_1)(x-a_2)\dots(x-a_n)+ \dots + c(x-a_2)(x-a_3)\dots(x-a_{n-1}).$$
Since $P'(a_1) = 0$, we then have $c(a_1-a_2)\dots(a_1-a_n) = 0$, thus $x\in \{{a_2,\dots, a_n}\}$. Suppose that $a_1=a_2$.
Then $$P = c(x-a_1)^2(x-a_3)\dots(x-a_{n-1}) (x-a_{n}).$$
Hopefully at some point, I can get $P = c(x-a_1)^n$.

Best Answer

Let $$P(x) = a_nx^n+....+a_1x+a_0,$$ then we have $$ a_nx^n + ...+a_1x+a_0 = (a_n\cdot n\cdot a) x^n+...+(aa_1+2a_2b)x+a_1b$$ Since $a_n\neq 0$ we get $an=1$, so $a=1/n$


Write $$ {P'(x) \over P(x)} = {1\over ax+b}$$

Then $$a(\ln P(x))' = (\ln(ax+b))'$$ and thus $$a\ln(P(x) = \ln(ax+b) + c$$

So $$P(x) = (ax+b)^{1\over a} e^c = (ax+b)^ne^c$$

Related Question