Find $\lim\limits_{n \to \infty} \frac{\frac{1}{\sqrt 1} + \frac{1}{\sqrt 2} + \dots + \frac{1}{\sqrt{n}}}{\ln (n)}$

analysislimitsreal-analysis

$\lim\limits_{n \to \infty} \frac{\frac{1}{\sqrt 1} + \frac{1}{\sqrt 2} + \dots + \frac{1}{\sqrt{n}}}{\ln (n)}$

Can we apply Stolz-Cesaro?

$\lim\limits_{n \to \infty}\frac {\frac{1}{\sqrt{n+1}} – \frac{1}{\sqrt{n}}} {{\ln(n+1)-\ln(n)}}$ =
$\lim\limits_{n \to \infty}\frac{\sqrt n – \sqrt {n+1}}{\sqrt n \sqrt{n+1}\ln(1+\frac{1}{n})}$ = $\lim\limits_{n \to \infty}\frac{1-\sqrt{1+\frac{1}{n}}}{\sqrt{n+1}\ln(1+\frac{1}{n})}$

What can I do from here?

Best Answer

The limit is $+\infty$.

You made an error in the first step. Applying Stolz-Cesaro, you should rather consider:

\begin{eqnarray*} \frac{\frac 1{\sqrt{n+1}}}{\ln{(n+1)}-\ln n} & = & \frac 1{\sqrt{(n+1)}}\cdot \frac 1{\ln \left(1+\frac 1 n\right)}\\ & = & \frac n{\sqrt{(n+1)}}\cdot \underbrace{\frac{\frac 1n}{\ln \left(1+\frac 1 n\right)}}_{\stackrel{n \to \infty}{\longrightarrow}1} \\ & \stackrel{n \to \infty}{\longrightarrow} & +\infty \end{eqnarray*}

Related Question