Find limit :$\lim_{n\rightarrow+\infty}\sum_{k=1}^{n}\frac {1}{k(k+1)(k+1)!}$

limitssummation

Question :

Find limit : $$\lim_{n\rightarrow+\infty}\sum_{k=1}^{n}\frac {1}{k(k+1)(k+1)!}$$


My attemp:
$$\lim_{n\rightarrow+\infty}\sum_{k=1}^{n}\frac {1}{k(k+1)(k+1)!}=\lim_{n\rightarrow+\infty}\sum_{k=1}^{n}\left(\frac {1}{k}-\frac {1}{k+1}\right)\cdot\frac {1}{(k+1)!}$$


I appreciate your help

Best Answer

Following Robert's Hint $$\frac{1}{k(k+1)(k+1)!}=\frac{(k+1)^2-k-k(k+1)}{k(k+1)(k+1)!}=\frac {1}{kk!}-\frac {1}{(k+1)(k+1)!}-\frac {1}{(k+1)!}$$ So our question becomes $$\sum_{k=1}^{\infty}\frac {1}{kk!}-\frac {1}{(k+1)(k+1)!}-\frac {1}{(k+1)!}$$ You can see that the first two terms telescope so we're left with $$1-\sum_{k=1}^{\infty}\frac{1}{(k+1)!}$$ $$=1-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots\right)$$ Recall that $$e=\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots\right)$$ So $$1-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots\right)=1-(e-2)$$ $$\boxed{=3-e}$$

Related Question