Find limit in law of $Y_n=\frac{n}{\max\{X_1, \ldots, X_n\}}$

limitsprobability distributionsprobability theoryweak-convergence

Let $(X_n)_{n \geq 1}$ be a sequence of i.i.d. random variables with density $$f(x) = \frac{1}{\pi (1+x^2)}$$

Let $$Y_n:= \frac{n}{\max\{X_1, \ldots, X_n\}}$$

I'm asked to find the limit in law of $Y_n$.

Here, I'm missing a bit the plan. Would it make sense to first compute $\mathbb P(Y_n < y)$ for $y \leq 0$ and $y>0$?

Thanks for any hint and comment.

Best Answer

Yes you can compute $\mathbb{P}(Y_n> y)$ as follows $$ \mathbb{P}(Y_n> y) = \mathbb{P}\left(\frac{n}{\max\{X_1, ..., X_n\}}> y\right) = \mathbb{P}\left({\max\{X_1, ..., X_n\}}< \frac{n}{y}\right) \\ =\mathbb{P}\left(X_1< \frac{n}{y}, ..., X_n< \frac{n}{y}\right) = \mathbb{P}\left(X_1< \frac{n}{y}\right)^n. $$ Therefore $$ \mathbb{P}(Y_n\leq y)=1-\mathbb{P}(Y_n> y) =1-\left(\frac{1}{\pi}\tan^{-1}{\frac{n}{y}}+\frac{1}{2}\right)^n. $$ Can you take the limit now?