Real Analysis – Find the Limit of an Integral Involving Sine Function

improper-integralsreal-analysis

I want to calculate the limit of following integral:
$$\lim _{n \rightarrow+\infty} n \sqrt{n} \int_0^{+\infty} \frac{\sin x^2}{\left(1+x^2\right)^n} d x$$
I think a feasible method is through substitution and then using the Dominated Convergence Theorem, but I am not sure how to start. Could someone give me a hint?

Best Answer

Substitute $x=\frac{t}{\sqrt{n}}$

Then according to the control convergence theorem (it is not difficult to verify the applicable conditions),$$\operatorname*{lim}_{n\to\infty}\int_{0}^{+\infty}\frac{n\sin\frac{t^{2}}{n}}{(1+\frac{t^{2}}{n})^{n}}\mathrm{d}t=\int_{0}^{+\infty}\lim_{n\to\infty}\frac{n\sin\frac{t^{2}}{n}}{(1+\frac{t^{2}}{n})^{n}}\mathrm{d}t=\int_{0}^{+\infty}t^{2}e^{-t^{2}}\mathrm{d}t=\frac{\sqrt{\pi}}{4}.$$

Related Question