Find $L(f)$ and the value of $U(f)$

real-analysisriemann-integration

Let $ f : [0, 1] ā†’ \mathbb{R}$ be a function given by
$$
f(x) =
\begin{cases}
x^2 , & \text{if $x$ is rational} \\
2x^2, & \text{if $x$ is irrational}
\end{cases}$$

Find $L(f)$ and write down the value of $U(f)$. Hence, show that $f$ is not Riemann integrable on $[0, 1]$.

Considering the general partition $P=\{x_0,x_1,…,x_n\}$ of $[0,1]$ I got

$m_k=\inf\{f(x); x \in [x_{k-1},x_k] \}=x^2_{k-1}$

$M_k=\sup\{f(x); x \in [x_{k-1},x_k] \}=2x^2_{k}$

therefore

$$L(f;P)=\sum_{k=1}^{n}m_k \Delta x_k=\sum_{k=1}^{n} x^2_{k-1} \Delta x_k$$ and

$$U(f;P)=\sum_{k=1}^{n}M_k \Delta x_k=\sum_{k=1}^{n} 2x^2_{k} \Delta x_k$$

I know $L(f)=\sup \{\space L(f;P); \text{P is partition of } \space [0,1] \} $ and $U(f)=\inf \{ \space L(f;P); \text{P is partition of} \space [0,1] \} $

but I cannot go further, Can anyone help me?

Best Answer

Since $x\in[0,1]$, $x^2 \le x \le 1$ so $$ m_{k} = \inf\left\{f(x)\ |\ x \in [x_{k-1}, x_{k}]\right\} = x_{k-1}^2 $$

Therefore, $$ L(f, P) = \sum_{k=1}^{n}m_k\, \Delta x_{k} = \sum_{k=1}^{n} x_{k-1}^2\, \Delta x_{k} $$

Consider the partition $P = \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\right\}$. Then \begin{align} L(f) &= \lim_{n\to \infty}\sum_{k=1}^{n} x_{k-1}^2\, \Delta x_{k} \\ &= \lim_{n\to \infty}\sum_{k=1}^{n} \left(\frac{k-1}{n}\right)^2\, \frac{1}{n} \\ &= \lim_{n\to \infty}\sum_{k=1}^{n} \frac{(k-1)^2}{n^3} \\ &= \lim_{n\to \infty}\frac{1}{n^3} \sum_{k=1}^{n} (k-1)^2 \\ &= \lim_{n\to\infty}\frac{1}{n^3}\sum_{k=1}^n\left(k^2-2k+1\right)\\ &= \lim_{n\to \infty}\frac{1}{n^3} \left[\left(\frac{n}{6} + \frac{n^2}{2} + \frac{n^3}{3}\right) - \left(n^2+n\right) + n\right] \\ &= \frac{1}{3} \\ \end{align}

Similarly, $U(f) = \frac{2}{3}$.

Since $U(f) \neq L(f)$, $f$ is not Riemann integrable on $[0, 1]$.


EDIT:

Definition: Let $P = \left\{x_0 = a, x_1, \dots, x_n = b\right\}$ be a partition of $[a, b]$ and let $\Delta x_i = x_i āˆ’ x_{iāˆ’1}$ for $1 \le i \le n$. Then the norm $||P||$ of $P$ is defined by $$ ||P|| = \text{max}\left\{\Delta x_i\ |\ 1 \le i \le n\right\} $$

Lemma: Let $f:[a, b] \to \mathbb{R}$ be a bounded function and $P$ be a partition of $[a, b]$, then $$ L(f) = \lim_{||P||\to 0} L(f, P) $$

Proof:

Given any $\epsilon > 0$, there exists a partition $Q = \{y_0 = a, y_1, y_2, \dots, y_n = b\} \subseteq [a, b]$ such that $$ L(f, Q) > L(f) - \frac{\epsilon}{2} $$

Let $M \in \mathbb{R}$ such that $|f(x)| < M$, $\eta = \text{min}\left\{\Delta y_i\ |\ 1 \le i \le n\right\}$ and $\delta < \text{min}\left\{\eta, \frac{\epsilon}{4(n-1)M}\right\}$.

Then for any partition $P = \{x_0 = a, x_1, x_2, \dots, x_m = b\} \subseteq [a, b]$ such that $||P|| < \delta$, \begin{align} \left|L(f, P \cup Q) - L(f, P)\right| &\le 2(n-1)M\delta \\ &< \frac{\epsilon}{2} \end{align}

Thus, \begin{align} L(f, P) &= \left[L(f, P) - L(f, P \cup Q)\right] + L(f, P \cup Q) \\ &> \left(-\frac{\epsilon}{2}\right) + L(f) - \frac{\epsilon}{2} \end{align} $\therefore ||P|| < \delta \,\Rightarrow\, L(f) - L(f, P) < \epsilon$