Find $\dim (Ker T + ImT) $ and $\dim(Ker T \cap ImT) $

linear algebra

let $(x_1,x_2,x_3,x_4) $ be a basis for a vector space $V$ of dimension $4.$
Define a linear transformation on $V$ such that $T(x_1) = T(x_2) =T(x_3) = x_1$, and $T(x_4) = x_2$.

Now Find

$a) \dim (Ker T + ImT) $

$b) \dim(Ker T \cap ImT) $

my attempts : First i convert them into matrix $T =\left[\begin{matrix}1 & 1 & 1 & 0\\ 0& 0 & 0 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\end{matrix}\right]$

now here for option $a)$ $\dim( Ker T) = 2, \dim (Im T)= 2$, so $\dim (Ker T + ImT)= 4 $

For option $b)$ $$\dim (Ker T + ImT)=\dim( Ker T) +\dim (Im T) – \dim(Ker T \cap ImT)= 2- \dim(Ker T \cap ImT)$$ that is $ 2 = 2 -\dim (Ker T \cap ImT)$

so,$\dim (Ker T \cap ImT) = 0$

Is my answer is correct or not ????

pliz help me
thanks u

Best Answer

Converting to a matrix is a very good idea: if $A$ is the matrix of $T$ with respect to $\{x_1,x_2,x_3,x_4\}$, then you can substitute the image of $T$ with the column space $C(A)$ of $A$ and the kernel of $T$ with the null space $N(A)$ of $A$.

However, some computations are necessary, because you need to find either $C(A)+N(A)$ or $C(A)\cap N(A)$, in order to apply Grassmann’s formula.

The column space is spanned by $$ \left\{\, v_1=\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, v_2=\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \,\right\} $$ The null space is spanned by $$ \left\{\, v_3=\begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, v_4=\begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \,\right\} $$ The vector $v_3$ is a linear combination of $v_1$ and $v_2$; on the other hand, $\{v_1,v_2,v_4\}$ is linearly independent. Therefore $$ \dim(C(A)+N(A))=3 $$ Now Grassmann’s formula says $$ \dim(C(A)\cap N(A))=\dim C(A)+\dim N(A)-\dim(C(A)+N(A))=2+2-3=1 $$

Since $C(A)\cap N(A)$ contains $v_3$ and has dimension $1$, so we conclude that $C(A)\cap N(A)$ is spanned by $v_3$.

Related Question