Find asymptotically equivalent function for $\ln \binom{n^2}{2n}$

asymptotics

How can I find an asymptotically equivalent function for $\ln \binom{n^2}{2n}$?

I think I need to use the definition of the binomial coefficient and Stirling's approximation, but I'm not sure what to do after this.

Best Answer

In the same spirit an in answer and comment, we can even get a very good approximation.

Writing $$\binom{n^2}{2 n}=\frac{(n^2)!}{(2n)! \, (n^2-2n)!}$$ $$\log \left(\binom{n^2}{2 n}\right)=\log\left((n^2)!\right)-\log\left((2n)!\right)-\log\left((n^2-2n)!\right)$$ Using Stirling approximation $$\log(p!)=p (\log (p)-1)+\frac{1}{2} \left(\log (2 \pi )+\log \left({p}\right)\right)+\frac{1}{12 p}-\frac{1}{360 p^3}+O\left(\frac{1}{p^5}\right)$$ apply to each term and continue with Taylor series for large values of $n$. This should give $$\log \left(\binom{n^2}{2 n}\right)=2 n \left(\log (n)+\log \left(\frac{e}{2}\right)\right)-\log \left(2 e^2 \sqrt{\pi }\right)-\log{(\sqrt n)}-\frac 3 {8n}+O\left(\frac{1}{n^2}\right)$$

As shown below, this is even quite good for very small values of $n$ $$\left( \begin{array}{ccc} n & \text{approximation} & \text{exact} \\ 3 & 4.49297 & 4.43082 \\ 4 & 9.49277 & 9.46265 \\ 5 & 15.0177 & 14.9999 \\ 6 & 20.9595 & 20.9478 \\ 7 & 27.2466 & 27.2383 \\ 8 & 33.8286 & 33.8224 \\ 9 & 40.6676 & 40.6628 \\ 10 & 47.7345 & 47.7306 \end{array} \right)$$