Find a basis for a set of vectors

linear algebravectors

I'm trying to complete the following exercise:

Let $V$ be the set of vectors $(x_1,x_2,x_3,x_4)\in\mathbb{R}^4$ such that $$2x_1-3x_2-x_3+x_4=0$$ $$x_1-x_2+2x_3-x_4=0$$ Show that $V$ is a subspace of $\mathbb{R}^4$ and find a basis for $V$.

I already showed that $V$ is a subspace of $\mathbb{R}^4$, but I'm having trouble finding a basis for $V$. Any help is welcome

Best Answer

The sum of the two equations gives

$$x_3=4x_2-3x_1$$

the second one yields to

$$x_4=x_1-x_2+2x_3$$ $$=x_1-x_2+2(4x_2-3x_1)$$ $$=-5x_1+7x_2$$

thus

$$(x_1,x_2,x_3,x_4)\in V\iff$$ $$(x_1,x_2,x_3,x_4)=$$ $$(x_1,x_2,-3x_1+4x_2,-5x_1+7x_2)=$$ $$x_1(1,0,-3,-5)+x_2(0,1,4,7)=$$ $$x_1\vec{u}+x_2\vec{v}$$

$\vec{u} $ and $ \vec{v} $ are clearly independent, so $ (\vec{u},\vec{v}) $ is a basis of $ V$ and dim$(V)=2$.