Fibonacci sequence/recurrence relation (limits)

fibonacci-numberslimitsrecurrence-relations

Let $\lbrace F_n\rbrace_{n \in \mathbb{N_0}}$ be the Fibonacci sequence.

$F_{n+1}=F_{n-1}+F_{n-2}$ for $n \in \mathbb{N}$ with $n \geq 2$ and start values $F_0:=0$ and $F_1:=1$.

How to determine:

$\lim\limits_{n\to\infty}\frac{F_n}{F_{n+1}}$?

I used:

If $a=\lim\limits_{n\to\infty}\frac{F_n}{F_{n+1}}$ then

$a=\lim\limits_{n\to\infty}\frac{F_n}{F_{n+1}}=\lim\limits_{n\to\infty}\frac{F_n}{F_n+F_{n-1}}$

Here I don't know how to continue.

Best Answer

Assign a variable to the first limit, such as $x$.

$$\lim_{n\to\infty}\frac{F_n}{F_{n+1}} = x$$

By definition, $F_{n+1} = F_n+F_{n-1}$, so rewrite the limit.

$$\lim_{n\to\infty}\frac{F_n}{F_{n}+F_{n-1}} = x$$

$$\lim_{n\to\infty}\frac{F_{n}+F_{n-1}}{F_n} = \frac{1}{x}$$

$$1+\lim_{n\to\infty} \frac{F_{n-1}}{F_n} = \frac{1}{x}$$

If $\lim_\limits{n\to\infty}\frac{F_n}{F_{n+1}} = x$, then $\lim_\limits{n \to \infty} \frac{F_{n-1}}{F_n} = x$ as well.

$$1 + x =\frac{1}{x}$$

$$x+x^2 = 1 \implies x^2+x-1 = 0 \implies x = \frac{-1\pm\sqrt{5}}{2}$$

Now, it's clear that only $x = \frac{-1+\sqrt{5}}{2}$ applies here, so $x = \frac{1}{φ}$, or the reciprocal of the golden ratio. The interesting thing is that this does not apply specifically to the Fibonacci sequence, but for Fibonacci-like sequences in general.