$f$ integrable iff $\sum_{n=1}^\infty 2^n \lambda(\{x\in[0,1]:|f(x)|\geq 2^n\})<\infty$

lebesgue-integrallebesgue-measuremeasure-theory

Let $f:[0,1]\rightarrow \mathbb R$ be a measurable function. I want to show
$f$ is integrable $\Leftrightarrow \sum_{n=1}^\infty 2^n \lambda(\{x\in[0,1]:|f(x)|\geq 2^n\})<\infty$.
I started with $\int_0^1 |f| d\lambda=\sum_{n=1}^\infty \int_{2^{-n}}^{2^{-n+1}}|f| d\lambda$. How can I go on now?

Best Answer

The key here is to notice that $$\int_{[0,1]}|f|\,d\lambda = \int_0^\infty \lambda(\{|f| > t\})\,dt = \sum_{n=1}^{\infty} \int_{2^{n-1}}^{2^{n}} \lambda(\{|f|>t\}) d t$$ Now notice that the function $t\mapsto \lambda(|f|>t)$ is decreasing and thus $$ 2^{n-1} \lambda(\{|f|>2^{n}\}) \leq \int_{2^{n-1}}^{2^{n}} \lambda(\{|f|>t\}) \,d t \leq 2^{n-1} \lambda(\{|f|>2^{n-1}\}) $$ for all $n\in \mathbb{Z}_{\geq 1}$. What you want to prove follows immediately from the above double inequality.