Expected value Holder inequality

expected valueholder-inequalityinequalityrandom variables

I have the following question; how do you prove this statement? I know that it is probably something related to the Holder inequality, but I couldn't figure out how to use it in this case.

Let $p,q > 0$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. Consider the real valued random variables $X, Y, Z$ that satisfy the following
\begin{align}
|Z| \leq |X|^{\frac{1}{p}} |Y|^\frac{1}{q}
\end{align}

Prove that
\begin{align}
\mathbb{E}[|Z|^q] \leq \mathbb{E} \left[ |X|^{\frac{q}{p}} \right] \mathbb{E} \left[|Y| \right]
\end{align}

Best Answer

We have $$ \mathbb{E}[|Z|^q] \leq \mathbb{E}\bigl[|X|^{q/p}|Y|\bigr] = \mathbb{E}\bigl[|X|^{q/p}\bigr] \mathbb{E}[|Y|] + \mathrm{cov}\bigl(|X|^{q/p},|Y|\bigr) \leq \mathbb{E}\bigl[|X|^{q/p}\bigr] \mathbb{E}[|Y|] $$ if $\mathrm{cov}\bigl(|X|^{q/p},|Y|\bigr) \leq 0$. This is the case for instance if $X$ and $Y$ are independent.

In general, the inequality is not true. Consider $X=Y=Z \sim \mathrm{Bernoulli}(1/2)$ and $p=q=2$. Then $$ \mathbb{E}[|Z|^2] = \frac12 > \frac14 = \mathbb{E}[|X|]\mathbb{E}[|Y|]. $$

Related Question