Expand the product of Laguerre polynomials into a sum of series?

laguerre-polynomialspower seriessummation

In the course of my research, I needed a formula and found it, but I can not understand the derivation process of the formula. How to extract the $t^n$ and get the $\theta(m-p)$ in the last step? Can you explain how to get the last step? Thank you.

The derivation process in the literature is as follows:

The generating function for the Laguerre functions is {$\phi_m(x_3;\alpha)$}

\begin{align}\frac{\alpha ^{1/2}e^{-(1/2)\alpha x_3 (1+s)/(1-s)}}{1-s}= \sum_{m=0}^{\infty} s^m\phi_m(x_3;\alpha)\end{align}

Thus

\begin{align*}
&\int_{0}^{\infty}dx_3\frac{\alpha ^{1/2}e^{-(1/2)\alpha x_3 (1+s)/(1-s)}}{1-s}e^{-\beta x_3}\frac{\alpha ^{1/2}e^{-(1/2)\alpha x_3 (1+t)/(1-t)}}{1-t}\\
&\quad=\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}s^m t^n\left \langle m|e^{-\beta x_3}|n \right \rangle\\
&\quad=\frac{\alpha}{(\alpha+\beta-\beta t)-(\beta+(\alpha-\beta) t) s}\\
&\quad=\alpha \sum_{m=0}^{\infty} s^{m} \frac{(\beta+(\alpha-\beta) t)^{m}}{(\alpha+\beta-\beta t)^{m+1}}\\
&\quad=\alpha \sum_{m=0}^{\infty} s^{m} \sum_{n=0}^{\infty} t^{n} \sum_{p=0}^{n} \theta(m-p) \frac{(m+n-p) !}{(m-p) !(n-p) ! p !} \frac{(\alpha-\beta)^{p} \beta^{m+n-2 p}}{(\alpha+\beta)^{m+n+1-p}}
\end{align*}

where $\theta(n)=1$ for $n=0,1,2, \ldots$ and $\theta(n)=0$ for $n=-1,-2,-3, \ldots$

Best Answer

We obtain \begin{align*} &\frac{\left(\beta+(\alpha-\beta)t\right)^m}{(\alpha+\beta-\beta t)^{m+1}}\\ &\quad=\frac{\beta^m}{\left(\alpha+\beta\right)^{m+1}}\, \frac{\left(1+\frac{\alpha-\beta}{\beta}t\right)^m}{\left(1-\frac{\beta}{\alpha+\beta}t\right)^{m+1}}\\ &\quad=\frac{\beta^m}{\left(\alpha+\beta\right)^{m+1}} \sum_{k=0}^\infty\binom{-m+1}{k}\left(-\frac{\beta}{\alpha+\beta}\right)^kt^k\left(1+\frac{\alpha-\beta}{\beta}\right)^m\tag{1}\\ &\quad=\frac{\beta^m}{\left(\alpha+\beta\right)^{m+1}} \sum_{k=0}^\infty\binom{m+k}{k}\left(\frac{\beta}{\alpha+\beta}\right)^kt^k\sum_{p=0}^m\binom{m}{p}\left(\frac{\alpha-\beta}{\beta}\right)^pt^p \tag{2}\\ &\quad=\frac{\beta^m}{\left(\alpha+\beta\right)^{m+1}}\sum_{n=0}^\infty \left(\sum_{{k+p=n}\atop{k\geq 0,0\leq p\leq m}}\binom{m+k}{k}\binom{m}{p} \left(\frac{\beta}{\alpha+\beta}\right)^k\left(\frac{\alpha-\beta}{\beta}\right)^p\right)t^n\tag{3}\\ &\quad=\sum_{n=0}^\infty \left(\sum_{{p=0}\atop{0\leq p\leq m}}^n\binom{m}{p}\binom{m+n-p}{n-p}\frac{(\alpha-\beta)^p\beta^{m+n-2p}} {(\alpha+\beta)^{m+n+1-p}}\right)t^n\tag{4}\\ &\quad\,\,\color{blue}{=\sum_{n=0}^\infty\left(\sum_{p=0}^{\min\{m,n\}}\frac{(m+n-p)!}{(n-p)!p!(m-p)!}\,\frac{(\alpha-\beta)^p\beta^{m+n-2p}} {(\alpha+\beta)^{m+n+1-p}}\right)t^n}\tag{5} \end{align*} and the claim follows.

Comment:

  • In (1) we make a binomial series expansion.

  • In (2) we use the binomial identity $\binom{-p}{q}=\binom{p+q-1}{q}(-1)^q$ and expand the binomial.

  • In (3) we calculate the Cauchy product.

  • In (4) we substitute $k=n-p$ and collect terms.

  • In (5) we use $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.