Existence of the Limit of a Two-Variable Function

limitsmultivariable-calculus

This problem is an example in my calculus textbook. Let:
$$
f(x,y)=\frac{y^2\sin^2(x)}{x^4+y^4}
$$

My textbook says that
$$
\lim_{(x,y)\to(0,0)}f(x,y) \text{ does not exist.}
$$

Questions:

  1. How do we know the limit does not exist?

  2. In general, suppose the limit of a function exists but we do not know the value of such limit, how do we find it?

Best Answer

Consider the curves $\gamma_{1} = (t,t)$ and $\gamma_{2}(t) = (t,t^{2})$. Thus we have \begin{align*}f(\gamma_{1}(t)) = \frac{t^{2}\sin^{2}(t)}{t^{4} + t^{4}} = \frac{\sin^{2}(t)}{2t^{2}} \Longrightarrow \lim_{t\rightarrow 0}f(\gamma_{1}(t)) = \lim_{t\rightarrow 0}\left[\frac{1}{2}\left(\frac{\sin(t)}{t}\right)^{2}\right] = \frac{1}{2} \end{align*}

On the other hand, we have \begin{align*} f(\gamma_{2}(t)) = \frac{t^{8}\sin^{2}(t)}{t^{4} + t^{8}} = \frac{t^{4}\sin^{2}(t)}{1 + t^{4}} \Longrightarrow \lim_{t\rightarrow 0}f(\gamma_{2}(t)) = \lim_{t\rightarrow 0}\frac{t^{4}\sin^{2}(t)}{1+t^{4}} = \frac{0\times 0}{1+0} = 0 \end{align*}

If the given limit existed, we should have $\displaystyle\lim_{t\rightarrow0}f(\gamma_{1}(t)) = \lim_{t\rightarrow 0}f(\gamma_{2}(t))$. Hence $\displaystyle\lim_{\textbf{x}\rightarrow\textbf{0}} f(\textbf{x})$ does not exist. Hope this helps.

Related Question