Probability Theory – Example of Levy Measure with Infinite Mass Around Zero

levy-processesmeasure-theoryprobability theoryself-learning

Let $X$ be an infinitely divisible random variable with the "Lévy–Khintchine triplet" $(a,\sigma, \nu)$ representation where $d\nu (x)=\frac 1 {x^{\alpha}} \chi_{(0,\infty)}dx$ with $ 1<\alpha <3$. This measure is a Levy measure, i.e.,
\begin{equation}
\nu(\{0\}),\quad \int_{|x|<1}|x|^{2} \nu (dx) <\infty, \quad \int_{|x| \geq 1} \nu (dx)<\infty.
\end{equation}

According to this answer, we have inifnite mass around zero:
\begin{equation}\label{prefinite_condition_measure0}\tag{I}
\nu( (-\epsilon, \epsilon) ) = \infty , \quad 0<\epsilon < 1.
\end{equation}

Note that for $\alpha = 2+ r$, with $-1<r<1$
\begin{aligned}
\int_{\mathbb{R}}x^2 d\nu(x)= \int_{\mathbb R} x^2 \frac 1 {x^{2+r}} \chi_{(0,\infty)}dx = \int_{0}^{\infty} x^{-r} dx = \infty
\end{aligned}

So I am looking for some example of Levy measure $\nu$ that satisfy (\ref{prefinite_condition_measure0}) but at the same time, I want:
$$\int_{\mathbb{R}}x^2 d\nu(x) < \infty$$
Could you give me some example?

Best Answer

Take $d\nu (x)=\chi_{(0,1)} (x) \frac 1 {x^{\alpha}}$ where $1 <\alpha <3$.