Evans’ Partial Differential Equations p.136 3.4.1 Shocks, entropy condition

hyperbolic-equationspartial differential equations

In Evans' PDE textbook p. 136, 3.4.1 Shocks, entropy condition:

More precisely, assume
$$
\left\lbrace
\begin{aligned}
&v : \Bbb R\times [0, \infty) \to \Bbb R \text{ is smooth, with}\\
&\text{compact support}
\end{aligned}
\right.
\tag{2}
$$

We call $v$ a test function. Now multiply the PDE $u_t + F(u)_x = 0$ by $v$ and integrate by parts:
$$
\begin{aligned}
0&=\int_{0}^{\infty}\int_{-\infty}^{\infty}(u_t+F(u)_x)\, v\, dx dt& \\
&=-\int_{0}^{\infty}\int_{-\infty}^{\infty}uv_t\, dxdt – \int_{-\infty}^{\infty}uv\, dx|_{t=0} \\ &\qquad – \int_{0}^{\infty}\int_{-\infty}^{\infty}F(u)v_x\, dxdt .
\end{aligned}
\tag{3}
$$

But my computation is
$$\int_{0}^{\infty}\int_{-\infty}^{\infty}(u_t+F(u)_x)v dxdt=\\-\int_{0}^{\infty}\int_{-\infty}^{\infty}uv_t dxdt+\int_{-\infty}^{\infty}uv dx|_{t=0}^{\infty}\\+\int_{0}^{\infty}F(u)v dtdx|_{-\infty}^{\infty}-\int_{0}^{\infty}\int_{-\infty}^{\infty}F(u)v_x dxdt$$

How to get the answer?

Best Answer

Since $v$ is smooth with compact support, its values at $x = \pm\infty$ and $t = +\infty$ are zero. This is also true for $uv$, $F(u)v$, etc. Hence, the additional terms obtained in your (correct) computation vanish, and the formula $(3)$ of Evans' book is obtained.

Related Question