Evaluation of Integral $\int_0^{+\infty}\frac{\sin^2(\tan\,\!x)}{x^2}\mathrm{d}x$

calculusdefinite integralsimproper-integralsintegration

Evaluation of $$\int_0^{+\infty}\dfrac{\sin^2(\tan\,\!x)}{x^2}\mathrm{d}x$$

Evaluate $\int_0^{\infty} {\sin(\tan(x)) \over x}dx$

I try to give the result through the method in the link, but I don't know what to do next.

\begin{align*}
I&\overset{\mathrm{def}}{=} \int_0^{+\infty}\frac{\sin^2(\tan\,\!x)}{x^2}\,\mathrm{d}x\\
&= \frac12 \int_{-\infty}^{+\infty}\frac{\sin^2(\tan\,\!x)}{x^2}\,\mathrm{d}x\\
&=\frac12 \left(\sum_{n=-\infty}^\infty \int_{(n-\frac12)\pi}^{(n+\frac12)\pi}\right)\frac{\sin^2(\tan\,\!x)}{x^2}\,\mathrm{d}x
\end{align*}

Best Answer

According to Lobachevsky Integral: $$\begin{aligned} &\int_0^{\infty}\frac{\sin^2(\tan x)}{x^2}\mathrm{d}x\\ =&\int_0^{\infty}\frac{\sin^2(\tan x)}{\sin^2x}\cdot \frac{\sin^2 x}{x^2}\mathrm{d}x\\ =&\int_0^{\frac{\pi}{2}}\frac{\sin^2(\tan x)}{\sin^2 x}\mathrm{d}x\\ =&\int_0^{\frac{\pi}{2}}\frac{\sin^2(\tan x)}{\tan^2 x}\mathrm{d}(\tan x)\\ =&\int_0^{\infty}\frac{\sin^2 u}{u^2}\mathrm{d}u\\ =&\frac{\pi}{2} \end{aligned}$$

Related Question