Evaluating the integral $\int_0^{\infty}\frac{dx}{\sqrt[4]{x}(1+x^2)}$ using Residue Theorem

complex-analysiscontour-integrationresidue-calculus

I need to evaluate the integral $$\int_0^{\infty}\frac{dx}{\sqrt[4]{x}(1+x^2)}$$

I've been given the hint to use the keyhole contour. So I would first choose the principal branch of $\sqrt[4]{\cdot}$, then I have the "keyhole" around $0$, giving me

$$2\pi i\left(\text{Res}_if+\text{Res}_{-i}f\right)= \\ \int_{\gamma_{R,\epsilon}}\frac{dz}{\sqrt[4]{z}(1+z^2)}=\int_{\gamma_R}f(z)dz-\int_{\gamma_\epsilon}f(z)dz+\int^R_{\epsilon} f(z)dz – \int^R_{\epsilon} f(-z)dz$$

($f$ is the integrand) Then taking $R \rightarrow \infty$ and $\epsilon \rightarrow 0$, should give me my result. But I happened to check out the integral in Wolfram Alpha and it gives the integral as $\frac{1}{2}\pi\sec\left(\frac{\pi}{8}\right)$, which is not what I get. Can I get some help? I'm sure I've gone wrong somewhere, and I'm pretty new at using these arguments, so help or insights will be nice.

Best Answer

Yet another way: we may remove the branch point at the origin by setting $x=z^4$, leading to $$ I = \int_{0}^{+\infty}\frac{dx}{\sqrt[4]{x}(1+x^2)}=\int_{0}^{+\infty}\frac{4z^2\,dz}{1+z^8}=\int_{0}^{1}\frac{4z^2\,dz}{1+z^8}+\int_{0}^{1}\frac{4z^4}{z^8+1}\,dz$$ then to $$ I = 4\int_{0}^{1}\frac{(z^2+z^4)(1-z^8)}{1-z^{16}}\,dz=4\sum_{n\geq 0}\left[\tfrac{1}{16n+3}+\tfrac{1}{16n+5}-\tfrac{1}{16n+11}-\tfrac{1}{16n+13}\right].$$ Now the Dirichlet $L$-series appearing in the RHS can be computed by recalling that $$ \sum_{n\geq 0}\left[\frac{1}{an+b}-\frac{1}{an+(a-b)}\right]=\frac{\pi}{a}\cot\left(\frac{\pi b}{a}\right) $$ holds by the reflection formula for the $\psi$ function / Herglotz trick. We get $$ I = \frac{\pi}{4}\left[\cot\left(\frac{3\pi}{16}\right)+\cot\left(\frac{5\pi}{16}\right)\right]=\color{red}{\frac{\pi}{\sqrt{2+\sqrt{2}}}}. $$