Evaluating $\sum_{r \in \mathbb{N}} (n-2r+1)^2 \binom{n}{2r-1}$

binomial-coefficientscombinatoricssummation

I am seeking to evaluate the sum $$S=\sum_{r \in \mathbb{N}} (n-2r+1)^2 \binom{n}{2r-1} \\ =(n-1)^2 \binom{n}{1}+(n-3)^2 \binom{n}{3}+(n-5)^2\binom{n}{5}+\cdots$$

I re-wrote the sum as $$S=(n+1)^2\sum_{r \in \mathbb{N}} \binom{n}{2r-1}-4(n+1)\sum_{r\in\mathbb{N}}r\binom{n}{2r-1}+4\sum_{r\in\mathbb{N}}r^2\binom{n}{2r-1}$$

It is clear from the binomial expansion of $(1+x)^n$, (by plugging $x=\pm1$ ) we get the value of the sum $\displaystyle \sum_{r\in\mathbb{N}}\binom{n}{2r-1}$ as $2^{n-1}$.

Now, after this I can find the value of the sums $\displaystyle \sum_{r\in\mathbb{N}}r\binom{n}{2r-1}$ and $\displaystyle \sum_{r\in\mathbb{N}}r^2\binom{n}{2r-1}$ by considering the binomial expansion of $\displaystyle \dfrac{(1+x)^n-(1-x)^n}{2}$ and substituting $x$ for $\sqrt{x}$ and then differentiating, and by manipulations, I will be able to find the desired sums.

However, this method gets very lengthy, especially when doing differentiation for finding $\displaystyle \sum_{r\in\mathbb{N}}r^2\binom{n}{2r-1}$.

I am hoping to see some other different approaches which don't involve so much calculation and are easy to understand.


The final closed form is $n(n+1)2^{n-3}$.

Best Answer

We can rewrite the sum as:

$$\begin{aligned}S&=\sum_{r \in \mathbb{N}} (n-2r+1)^2 {n \choose 2r-1} \\&= \sum_{r \in \mathbb{N}} (n-2r+1)^2 {n \choose n-2r+1} \\&= \sum_{r \in \mathbb{N}} (n-2r+1)^2 \frac{n!}{(n-2r+1)!(2r-1)!} \\&= \sum_{r \in \mathbb{N}} n(n-2r+1) \frac{(n-1)!}{(n-2r)!(2r-1)!} \\&= \sum_{r \in \mathbb{N}} n(n-2r+1) {n-1 \choose 2r-1} \\&= n^2 \sum_{r \in \mathbb{N}} {n-1 \choose 2r-1} - n \sum_{r \in \mathbb{N}} (2r-1){n-1 \choose 2r-1} \\&= n^2 \frac{2^{n-1}}{2} - n(n-1) \frac{2^{n-2}}{2} \\&= n2^{n-3}(2n-n+1) \\&= n(n+1)2^{n-3}\end{aligned}$$

Related Question